$H \to \tau^+ \tau^-$ CP Violation Analysis for SiD

L. Braun

J. Brau

University of Oregon

October 14, 2020

Tau-Based Analysis of Higgs CP Violation

- ullet General methodology: extract **polarimeter vector** from analyzing tau decay; find azimuthal angle between au^+ and au^- polarimeter vectors
- Polarimeter vectors vary with tau decay; $\tau^\pm \to \pi^\pm \nu_\tau$ (below) and $\tau^\pm \to \pi^\pm \pi^0 \nu_\tau$ are the simplest to analyze, but using **higher-multiplicity decays** would allow for **more events** to be used

Review of Tau Tagging and Decay Separation

- Strong separation of signal from 4f background and tau decay separation
- \bullet Main weak point is likely limited π^0 reconstruction

Tau tagging efficiency

NN tag	Truth event type					
	au	bkg				
τ	99.99	2.87				
bkg	0.01	97.13				

Migration among τ decay paths (%)

NN tag	Truth decay path								
	π^{\pm}	$\pi^{\pm}\pi^{0}$	ℓ	$\pi^{\pm}2\pi^{0}$	$\pi^\mp 2\pi^\pm$	other	bkg		
π^{\pm}	94.80	2.75	0.06	0.22	2.08	4.02	4.27		
$\pi^{\pm}\pi^{0}$	3.38	92.88	0.12	12.65	2.31	7.07	13.03		
ℓ	0.92	0.83	99.02	0.58	2.48	6.46	44.44		
$\pi^{\pm}2\pi^{0}$	0.02	2.05	0.01	82.71	0.15	8.83	4.70		
$\pi^{\mp}2\pi^{\pm}$	0.42	0.47	0.25	0.32	85.49	10.42	8.76		
other	0.47	1.03	0.53	3.53	7.48	63.20	24.79		

Signal vs 4f Background

Preliminary Post-Tagging CP Distributions

- Plotting all events' calculated CP values based on decay label given by NN
- For decay paths with **neutral pions**, poor π^0 reconstruction required using unpaired photons to make enough events be usable
 - π^{\pm} : require leading π^{\pm} with non-zero PCA
 - ℓ : require leading ℓ with non-zero PCA
 - $\pi^{\pm}2\pi^{\pm}$: require three charged pions, one of different charge $\pi^{\pm}\pi^{0}$: require leading π^{\pm} and 1 π^{0} or γ

 - $\pi^{\pm}2\pi^{0}$: require leading π^{\pm} and 1 π^{0} or γ

Asymmetry Weighting of Post-Tagged Distributions

- Improved asymmetry for higher-energy events holds for post-tagging CP distributions, making energy-binned weighting worthwhile
- To improve mixing angle measurements, must fit many decay paths simultaneously
- Technique from the literature: separate out decay paths and require all to agree on fitted phase. (Putting distributions together doesn't improve results enough.)

Next Steps

- Adding more background data: either scale background and signal to proper cross section or sample from uniform CP distribution for background
- Simultaneously fit all decay paths to estimate CP analysis precision
- Full SiD reconstruction, full tau reconstruction