IDT-WG2 Dump

2020/10/13 Nobuhiro Terunuma, KEK

2020/10/13 IDT-WG2 DR/BDS/Dump subgroup meeting, N.Terunuma (KEK)

Charges of sub-group

C1: Technical preparation (remaining topics) at Pre-lab

- C2: Preparation for mass production at Pre-lab
 - It is out of the scope for beam dump ... max 9 units for 60kW tune-up dump

C3: Possible schedule at Pre-lab

C4: International sharing candidates of these activities

Dump	Max. Power	Num	Examples (design)	
Tune-up	60 kW	9	LCLS-II (120kW)	If rastering \rightarrow 250kW
Tune-up ML	400 kW	2	XFEL (300kW)	
Undulator photon	300 kW	1	-none-	Conceptual designs (graphite at 2km, water)
Main dump	17 MW (1TeV)	2	SLAC (2.2MW), JLAB (1MW)	Water dump; 0.75, 0.9MW operated
Undulator 5+5Hz	8 MW	1	Same as main dump	Same as main dump

17 MW main dump and 8 MW(5+5 Hz) dump

- Basic design as water dump has been established. (TDR) 14MW+20% margin
- need technical design for window and its remote exchange, activated water circulation system, radiation safety and CFS.

Photon Beam Dump (Graphite or Water, type C)

•We have 2 design candidates. Water Curtain and Graphite design.

 Basic thermal analysis was already done. Next issue will be how we can make the robust system with industrial technology. * Photon Dump Design and R&D plan :Y. Morikawa, POSIPOL2018,

Yu Morikawa, LCWS2019 ⁹

Main Beam Dump (Water , type D&E)

[Beam Power @ 1TeV Beam operation]

•500GeV × 2.79nC × 2450Bunches × 4pulses/sec: 13.7MW + 20% safety margin ≒ 17MW

Base Design*

- Water power absorber and forced convection to extract the heat.
 - * Water is compressed **1 MPa** \Rightarrow **boiling temp 180°C**
 - * Vortex water flow \Rightarrow Mass flow rate : 104.5kg/s each inlet, flow velocity 2.17m/s
- •1mm thick Beam Window made of Ti-6Al-4V.

* Base design of ILC Main Beam Dump : P. Satyamurthy, et.al., NIM A 679 (

Yu Morikawa, LCWS2019

Main Beam Dump (Water , type D&E)

Many simulations have been performed on this beam dump performance.*

Minimum Pressur

600.00

700.00

500.00

Flow time(usec

Maximum Pressure

In Beam Pulse

1312 bunches

Main beam dump

- Big cavern to install the 5m-thick shields.
- Water dump capable for 17MW beam power (1TeV).

Optimization of cavern is ongoing with Civil Team in Japan.

Avoid big-flat utility cavern

C1: Technical preparation (remaining topics) at Pre-lab

Specific designs what we need to proceed

- 300 kW photon dump
- 17 MW main dump
 - Water flow system (include vortex flow in dump vessel)
 - Window sealing and remote exchange (30cm in diam., 10 atm activated water)
 - Countermeasure for failure; e.g., window, water system,...
- Civil and utility design under the condition of candidate site
- Robustness test of window for 17 MW main dump
 - Prototyping of window and its attachment
 - Beam test of window material if possible

C3: Possible schedule at Pre-lab

- A convincing main dump design with maintenance and failure scenarios should be prepared in early Pre-lab phase.
- SCJ and MEXT panel show concerns about the safety on the main beam dump. Radioactive product is a concern by people especially in candidate site.
- The main dump window needs to be studied well, but the concern about it is not like a showstopper, but an engineering issue.
- **Prototyping of the window system** is expected in Pre-lab phase, for a better maintenance design.

C4: International sharing candidates of Pre-lab activities

Possible collaboration on the engineering design of dump system

- SLAC, JLAB ... experience of the 1MW water dump
- CERN, DESY ... High power dumps
- Spain ... ESS Target (5MW), IFMIF dump (1MW)

Study of the window material

- Industry/supplier
- possibly with RaDIATE collaboration for the high-power targets

Activity on ILC main dump

- Until the TDR, overseas researchers contributed and summarized the base design.
- After the TDR, especially in recent years, KEK has resumed the dump study to fulfill the responsibility for radiation safety by host country.
 - Member: staff of ILC accelerator and Radiation Safety
 - Studying the radiation safety over the ILC
 - Visited the dump sections at CERN, SLAC and JLAB
 - Now we start the design work with companies for the sub-system
 - Water flow system
 - Window system (sealing and remote exchange)
 - Civil and utility design under the condition of candidate site
- Willing to re-organize the international team