Jet energy calibration using $e^+e^- \rightarrow \gamma Z$ process at the ILC

Takahiro Mizuno sokendai

JES Calibration

Fitting the relative difference of reconstructed jet energy with gaus+gaus+exponential

Calibration is based on the mean value of the gaus (Core). Theta, energy, and flavor dependence were checked.

Recent Progress

- Binning is changed for the energy dependence plot. The energy is not from PFO but from Method3 reconstructed. It is because PFO photon energy can be underestimated.
- Fitting is performed twice and the fitting range is changed.

Energy dependence

Mean value of the core gaussian is order of 10-4 independent on the jet energy.

Higher energy jet has negative bias and lower one has positive bias.

Polar angle dependence

Forward jet makes slight positive bias on the core gaussian and barrel region jet makes slight negative bias on the core gaussian.

Flavor dependence 6 Showing dependence on flavor of the seed of the jet **Mean of the Fitting Gaussian** Sigma of the Fitting Gaussian 0.04 Δ σ^{Core} Mean of (E_J-E^{MC})/E^{MC} .11 ▼ σ^{Base} 0.08 $\sigma_{\text{J2}}^{\text{Core}}$ Base 0.02 0.06 0 Sigma of 0.04 ս^{Core} Ο -0.02 Base 0.02 0 Ο Core Base -0.04 \mathbf{O}

Mean value of the core gaussian is order of 10⁻⁴ independent on the flavor.

b

C

C

U

S

d

U

S

b

C

Next step

- Check the effect of the beam energy deviation.
- Integrate jet1 and jet2.

Backup

Jet energy distribution

Jet mass distribution

Jet1

Jet2

Correct photon selection

Correct photon selection cut 1

Cut1: M_{2j} <125 GeV && E_{vis} >200 GeV

Correct photon selection cut 2

Wrong photons are near jet axes

Cut2: $\cos\theta(\text{Jet1} \cdot \gamma) < 0.95 \&\& \cos\theta(\text{Jet2} \cdot \gamma) < 0.95$

$M_{2j} \ distribution \ after \ all \ but \ M_{2j} \ cut$

Source (B): Error of the jet mass inputs¹⁵

Large dependence on both jet 1 mass and jet 2 mass inputs. If <8 × 10⁻⁴ accuracy is necessary, compensation to the reconstructed jet energy should be introduced.