
Input(64×64pixel figure)
e.g.) energy map

Trial
• Use Keras & tensorflow backend

• Using a certain map(s) of each event, estimate color of each
track

• Do not consider color-singlet state

1

Output(64×64pixel figure)

9 input images
Energy map
Charge map
D0sig map + direction vector(x, y, z)
Z0sig map
Ecal map
Hcal map

+ no particle

Create answer

• Supervised learning - Create “answer” jets: perfect Durham jet
clustering

• So far, do not consider color singlet state: number of jets is 6

• ZHH→(qq)(bb)(bb)→6jets
2

ZHH

Z

H

H

2jets using
Durham

2jets using
Durham

2jets using
Durham

Pseudo-labelling
• Output: inference of the probability of the color to be assigned

• σ𝑦𝑖 = 1.0

• The combination of color assignments is arbitrary, so assign
them so that the loss function is minimized.

• Using preliminary results after a training, re-assign the color
combination

• Minimize cross entropy 𝐿 =
1

𝑛
σ𝑦𝑖 log 𝑝𝑗

3

output

y1 y2 y3 y4 y5 y6 + no particle

Start:
Energy ordering
Of jets

input Output

reassignment

CNN

Data Cleansing
• Perfect Durham clustering is not always the best clustering into

2 jets for CNN

• By using the preliminary training weights, clustering into 2 jets
is performed

• Clustering particles to make loss function minimum

• First pseudo-labeling. After that, data cleansing

• Is there better way?
4

Start:
Perfect Durham 2 jets input Output

Data Cleansing

CNN

Color singlet

Durham
CNN

status

• Use ZHH→(qq)(bb)(bb): 6jets clustering

• q: uds

• Use 80000 events for training(72000 train, 8000 validation)

• Very weak or no over fitting can be seen

• Don’t consider color singlet state for network training

• Input: 6 + 3 images output: 6 + 1 images

5

Comparison with Durham

6

• Seems to start to exceed Durham performance!
• Mis-clustering to adjacent jets
• Need to remove it as much as possible

• Need to improve an efficiency in circle to get
better performance

Durham
DNN

prediction

an
sw

er

backups

7

• Convolution: Apply the filters to extract the feature

• Sum of the product of each pixel and filter weights:

𝑦𝑘𝑙 = σ𝑖,𝑗𝑤𝑖𝑗 ∙ 𝑥 𝑘+𝑖 𝑙+𝑗 (+𝑏)

• Slide filters over all the pixels

• Filters are parameters: CNN can obtain them automatically

• After the convolutional operation, apply non-linear transform

𝑧𝑘𝑙 = 𝜎(𝑦𝑘𝑙)

• “Non-linear” is important to get good expression

• Stack these operations

Basics: convolution

8

Basics: Residual convolution
• Stream is divided into 2 paths:

• Path with convolution

• Path without any operation

• Sum up these 2 path in downstream

• Can learn “Residuals” of previous layer features

• Can construct very deep network

• >100 layers can be constructed

• Deeper will be better performance

9

plain

Basics: Transposed convolution
• Reverse operation of convolution

• After adding padding, do convolution

• Use for upsampling

10

Data Augmentation

• Random shift for x axis

• Considering periodic condition of φ angle (f(Φ+2π) = f(Φ))

• To suppress over fitting

• Add random y-flip (I think not good from physics point of view, but suppress over-fitting is
important)

11

