3^{rd} meeting of SRF subgroup in IDT/WG2

✓ New member of SRF subgroup

- ✓ Brief report of KEK-DOE meeting
- ✓ Brief report of SRF session in AWLC2020
- ✓ Discussions on main items in technical preparation period✓ Others (if any)

Attendees: A. Yamamoto, A. Lankford, S. Michizono, H. Hayano, O. Napoly, D. Delikaris, N. C. Lasheras, S. Posen, R. Rimmer, R. Geng, M. Liepe, Kirk, S. Stapnes, P. McIntosh, R. Laxdal, P. Burrows

https://agenda.linearcollider.org/category/256/

Kirk

3rd meeting of SRF subgroup in IDT/WG2

IDT-WG2 organization

IDT WG2

Shin Michizono (Chair) Benno List (Deputy)

51	KF
Yasuchika Yama	imoto
Nuria Catalan	
Dimitri Delikaris	
Rongli Geng	

Hitoshi Hayano

Matthias Liepe

Peter McIntosh

Olivier Napoly

Robert Rimmer Marc C. Ross

Akira Yamamoto

Sam Posen

27/Oct/2020

Bob Laxdal

CDF

DR/BDS/Dump

KEK	Toshiyuki Okugi	KEK
CERN	Karsten Buesser	DESY
CERN	Philip Burrows	U. Oxford
JLAB	Angeles Faus-Golfe	LAL
KEK	Jenny List	DESY
Triumf	Thomas Markiewicz	SLAC
Cornell	Brett Parker	BNL
STFC	David L. Rubin	Cornell
CEA	Nikolay Solyak	FANL
FNAL	Luis Garcia Tabares	CIEMAT
JLAB	Nobuhiro Terunuma	KEK
SLAC	Glen White	SLAC
KEK	Kaoru Yokoya	KEK

Charges of Sub-groups

- Discuss and coordinate the topics for
 - technical preparation (remaining topics) at Pre-lab
 - preparation for mass production at Pre-lab
 - possible schedule at Pre-lab
 - international sharing candidates of these activities
- Report to the IDT-WG2

All members belong to some sub-group(s).

Sources

Kaoru YokoyaKEKJoe GramesJLABHitoshi HayanoKEKMasao KurikiU. HiroshimaBenno ListDESYGudridU. Hamburg

Civil engineering

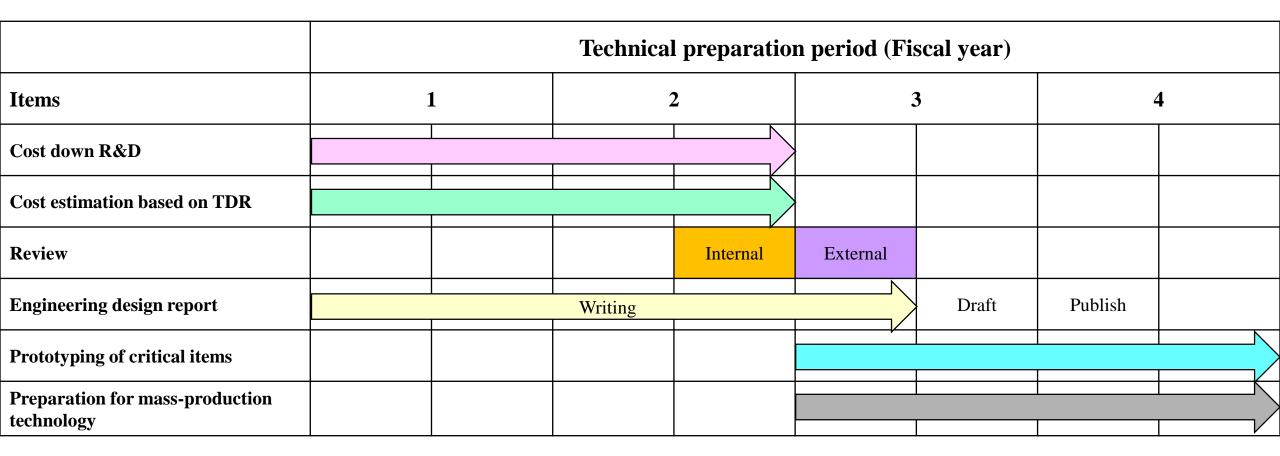
Nobuhiro Terunuma	КЕК
John Andrew Osborne	CERN
Tomoyuki Sanuki	U. Tohoku

Brief report of KEK-DOE meeting

- The meeting done at 7:00~8:22 on 27/Oct (JST)
- Organized by A. Lankford
- 35 people attended
 - Japan: S. Michizono, A. Yamamoto, K. Yokoya, N. Terunuma, Kirk
 - Members of SRF subgroup in Americas: R. Rimmer, M. Liepe, R. Laxdal, R. Geng, S. Posen
- Michizono-san presented ILC overview, IDT, technical preparation, budget request from KEK, Recommendations on ILC Project Implementation, SCRF, positron source, damping ring, final focus system, beam dump, potential US accelerator contribution, and so on.
- A lot of discussions/questions/comments

Brief report of SRF session in AWLC2020

- □ 20 impressive presentations incl. three large-scale operating/on-going projects
- □ Presentation time was too short! Necessary to be considered in next LCWS
- **D** Each topic:
 - **C** E-XFEL by Nick; Four degraded cavities during operation, Stable RF availability, Piezo has impact on beam dynamics
 - □ LCLS-II-HE by Mattia; 2/0 doping was chosen as standard recipe, Cold temperature (<13°C) EP used, Higher Q_0/E_{acc} than LCLS-II was already achieved in CM test
 - □ PIP-II by Genfa; Two CMs (HWR and SSR1) constructed/tested and testing, common design of 325/650 MHz CMs
 - □ Tuner by Yuriy; LCLS-II tuner is strong candidate for to ILC (no design changes required), piezo study is necessary
 - Power coupler by Denis; 776 couplers operated stably, 4 couplers had no conditioning and overheating, Much higher power operation is necessary for ILC
 - □ Robotics by Stephane; Robotics study is under progress using ESS cavities, Goes to assembly of flange/coupler in future


Schedule of SRF subgroup meeting in IDT/WG2

Meeting #	Date	Contents
1	29/Sep/2020	introduction, member list, schedule/work items in technical preparation, discussions
2	13/Oct/2020	New member, discussions on how many cavities/CMs to be produced, AWLC2020
	19~22/Oct/2020	AWLC2020 on virtual
3	27/Oct/2020	Brief report of KEK-DOE mtg and AWLC, discussions on main items in technical preparation
4	10/Nov/2020	
5	24/Nov/2020	
6	8/Dec/2020	
7	22/Dec/2020	Draft of sharing work items in technical preparation period
?	12/Jan/2021?	
	Feb/2021	First draft of budget request in each region/lab., Submission to WG1/EB
		Preparation for MOU between/among laboratories
	Jun~Jul/2021	Submission of budget request to MEXT, in case of Japan

Main discussion items based on [AWLC2020 "Recommendations on ILC Project Implementation"

- •Cavity and cryomodule production
 - \bullet 100 cavities produced in preparation for mass production
 - \bullet ~1% of full production
 - ◆ Japan: 50 cavities, other regions/countries: 50 cavities
 - ◆By new cost-effective production method
 - Plug-compatibility re-confirmed/re-established
 - ◆To be checked RF performance/success yield
 - ◆High pressure gas regulation in Japan (cavity/cryomodule production)
 - Coupler/tuner improved/produced/assembled/tested
 - Cryomodule production/test
- Cryomodule transport ("Global Cryomodule transfer")
 - Shipment/transport incl. inspection
 - ◆RF performance rechecked after transport

Pre-Lab schedule (translated into table)

Brief view of cavity production by cost-effective method, and the best recipe

◆Step 1 (production)

- ◆Cavity production by cost-effective method incl. selection of Nb material
- Reconfirmation of plug-compatibility (only flanges)
- ◆Not necessary for satisfying high pressure gas regulation of Japan
- ◆Not necessary for helium tank

Step 2 (decision of surface/heat treatment methods)
Cold temp. EP or standard EP?
N-dope, N-inf, Low temp. baking, Mid temp. baking, etc.?

Step 3 (RF performance check) VT1, but if not successful, VT2 done (after VT3, to be discussed)

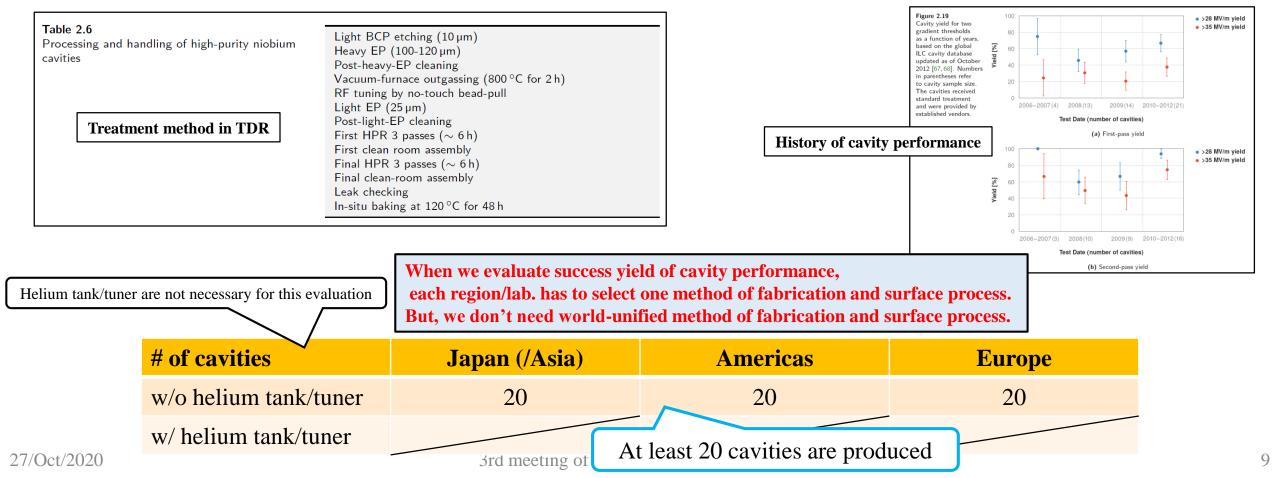
Step 4 (success yield)

Estimate success yield for 1st pass and 2nd pass (after 3rd pass, to be discussed) ^{27/Oct/2020}

Technical workshop is necessary

Technical workshop is necessary

How many cavities are produced for mass production?


Discussion item

We can refer Volume 3 Part 1 in TDR.

At that time, **16** 9-cell cavities (out of > 50 cavities, **recognized as identical in fabrication and surface process**) were used to evaluate cavity performance.

In the preparation phase, **at least ~ 20 or much more cavities are necessary** to evaluate recent surface treatment method including fabrication method much advanced since TDR.

Not only surface treatment method but also what type of Nb material/fabrication method is used has to be discussed.

Brief view of high pressure gas regulation

Step 1 (discussion)

◆Before cavity/CM production, we need to discuss with KHK (authority of HPG in Japan)

- ♦KHK requests to submit necessary documentations (material certificate, EBW method, simulation results related to mainly mechanical crush, etc.)
- ♦KHK may request Charpy impact test for Nb material

Step 2 (production)

Cavity/Cryomodule production satisfying high pressure gas regulation

Step 3 (inspection)
Must undergo completion inspection for cavity

Brief view of "Global CM transfer"

\$ Step 1 (production)

Cavity/Cryomodule production satisfying high pressure gas regulation

◆Step 2 (performance check)

Checking RF performance and success yield in each region

Step 3 (transport)

Designing/developing cage and shock damper

◆Inspecting vacuum pressure and mechanical damage after transport

Step 4 (performance re-check)

•Re-checking RF performance and success yield in Japan (maybe in others)

How many cryomodules are produced for mass production?

ILC needs two types of cryomodules; Type A and Type B. Any laboratory has never produced same types of CM as ILC. High pressure gas regulation of Japan should be also satisfied for ILC.

As first step, each region produces **one prototype CM** (not necessary for conforming high pressure gas regulation). **Type B is preferred**, as it includes systems of SC-Q magnet/cold BPM. Prototype CM is produced and tested in each region.

As second step, each region produces at least one CM conforming high pressure gas regulation of Japan.

That CM (Type B is preferred) is produced and tested in each region. If possible, Type A can be also produced.

As final step, each region carries out **global CM transfer to Japan**. CM produced in second step is available.

Table 3.1

Summary of key numbers for the SCRF Main Linacs for 500 GeV centre-of-massenergy operation. Where parameters for positron and electron linacs differ, the electron parameters are given in parenthesis.

Cavity (nine-cell TESLA elliptical shape) Average accelerating gradient Quality factor Q_0 Effective length	31.5 10^{10} 1.038	MV/m
R/Q Accepted operational gradient spread	1036 ±20%	Ω
Cryomodule Total slot length Type A	12.652 9 cavities	m
Type B	8 cavities	1 SC quad package
ML unit (half FODO cell) (Type A - Type B - Type A)	282 (285)	units
<i>Total component counts</i> Cryomodule Type A Cryomodule Type B Nine-cell cavities SC quadrupole package	564 (570) 282 (285) 7332 (7410) 282 (285)	
Total linac length – flat top. Total linac length – mountain top. Effective average accelerating gradient	11027 (11141) 11072 (11188) 21.3	m m MV/m
$\begin{array}{l} \textit{RF requirements (for average gradient)} \\ \textit{Beam current} \\ \textit{beam (peak) power per cavity} \\ \textit{Matched loaded } Q \; (Q_L) \end{array}$	5.8 190 5.4 \times 10 ⁶	mA kW
Cavity fill time Beam pulse length Total RF pulse length	924 727 1650	μs μs μs

44%

RF-beam power efficiency

Discussion item

# of cavities/couplers/CMs	Japan (/Asia)	Americas	Europe
Cavity	16 + spare	16 + spare	16 + spare
Power coupler	16 + spare	16 + spare	16 + spare
Cryomodule	2	2	2
ct/2020	3rd meeting of SRF s	ubgroup in IDT/WG2	

Questions/Discussions/Comments (memorandum) @3rd meeting

Translation by Kirk

- 50 cavities satisfied with HPG? Or not? Cost should be effectively used. Cavities w/o helium tank is used for only estimation of success yield
 - 10 cavities w/o tank in 1st year, 10 cavities w/ tank satisfying with HPG in 2nd year...
- Necessary for learning impact on high pressure gas regulation of Japan
- How much is one cavity estimated?
- Flexibility in surface treatment is necessary, to be discussed
 - To be decided in technical workshop
- International workshop is necessary to review material/fabrication/surface treatment methods
 - plug-compatibility reconfirmed
 - To be held after TTC meeting 2021 or next LCWS2021?
- New vendors in US
 - Important to find cavity fabrication vendor, in not only US but the other countries
 - To be checked qualification, learning curve expected, capability of large number production, etc.
- In GDE, cost estimation has been done by single vendor
- Reexamine lesson/learned from what GDE have done
- After E-XFEL construction, cavity fabrication cost is not changed, or a little changed
 - Cost of power coupler increased
- Laboratory-vendor collaboration in cavity fabrication is also necessary
 - KEK has already done
- Year and year plan is necessary in each region for technical preparation period
- Americas laboratory proposals in next meeting
 - Kirk requests responsible persons in each lab.

References

- KEK homepage
 - https://www2.kek.jp/ilc/en/
- Technical Design Report
 - https://ilchome.web.cern.ch/publications/ilc-technical-design-report
 - https://www2.kek.jp/ilc/en/docs/
- The International Linear Collider Progress Report 2015
 - https://www2.kek.jp/ilc/en/docs/
- The International Linear Collider A Global Project
 - Submitted to European Particle Physics Strategy Update, 2020.
 - https://indico.cern.ch/event/765096/contributions/3295702/
- ILC Action Plan
 - https://www.kek.jp/ja/newsroom/2016/01/06/1400/
 - https://www.kek.jp/ja/newsroom/2018/04/24/1200/
- Recommendations on ILC Project Implementation
 - https://www.kek.jp/ja/newsroom/attic/20191001_%20ILC%20Project.pdf
 3rd meeting of SRF subgroup in IDT/WG2

Backup slides

Mission of SRF subgroup in IDT/WG2

◆List work items in ILC preparation period

- ◆ Plug-compatibility of design to be re-confirmed/re-established
- ◆ Mass production
- ♦ Global CM transfer
- ♦ Any other?
- ◆List technical concerns (if any)
 - Although E-XFEL has been successfully constructed and operated (and LCLS-II also in progress), are there any concerns for ILC to be constructed in Japan?
 - ♦ High pressure gas (HPG) regulation to be globally handled
 - ♦ In Japan, IFMIF (@Rokkasho) requested CM construction to EU (satisfied with HPG regulation)
 - ♦ Contents specialized in Japan?
- ◆List human resources/budget/schedule for each work item and in each region/lab.
 - ◆ Necessary to discuss how to share each work item for each region/lab.

Technical preparation of SRF (only 4 years!)

□ Mass production satisfied with the ILC spec.

- □ 9-cell cavity production by cost effective method (to be discussed true number)
 - □ Production to be demonstrated during the Preparation Phase (Japan: 50 cavities, Others: 50 cavities)
 - □ RF performance, and success yield to be evaluated, under plug-compatible fabrication conditions
 - □ Surface treatment to be discussed (see next slide)
- □ Ancillaries production (power coupler, tuner, HOM antenna, etc.)
- Cryomodule (CM) production (Prototype, Type A, Type B)

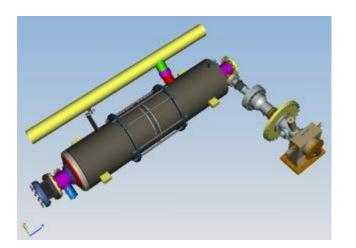
Global CM transfer

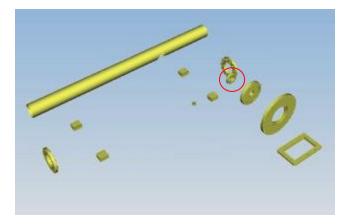
□ After surface (sea/marine) transportation, CM test to be done to confirm legal process in high-pressure code and RF performance in Japan (maybe in others)

In case of Japan;

Construction of hub-laboratory for mass production

Demonstration of beam acceleration satisfied with ILC spec.


□ After CM test, CM may return to home country


Any other items?

Remarks:

- > Necessary cost should be considered **based on TDR**.
- > Another important point is that new technology (fabrication/surface treatment) is reliable.

Plug-compatible Conditions

ltem	Variation	TDR Baseline
Cavity shape	TESLA / LL	TESLA
Length		Fixed
Beam pipe flange		Fixed
Suspension pitch		Fixed
Tuner	Blade/ Slide-Jack	Blade
Coupler flange (cold end)	40 or 60	40 mm
Coupler pitch		Fixed
He –in-line joint		Fixed

Plug-compatible interface established, in TDR, 2013

SRF-Report at ILC-PAC

12/12/13

Accelerator activities at ILC Pre-lab phase

Technical preparations / performance & cost R&D [shared across regions]

SRF performance R&D

Technical preparation

- Positron source final design and verification
- Nanobeams (ATF3 and related): Interaction region: beam focus, control and Damping ring: fast kicker, feedback
- Beam dump: system design, beam window, cooling water circulation
- Other technical developments considered performance critical

Final technical design and documentation [central project office in Japan with the help of regional project offices (satellites)]

- Engineering design and documentation, WBS
- Cost confirmation/estimates, tender and purchase preparation, transport planning, mass up and construction schedule preparation
- Site planning including environmental studies, CE, safety and infrastructure (see below for details)
- Review office
- Resource follow up and planning (including human resources)

Preparation and planning of deliverables [distributed across regions, liaising with the production of the state of the sta

- Prototyping and qualification in local industries and laboratories, from SRF production lines to individual WBS items
- Local infrastructure development including preparation for the construction phase (including Hub.Lab)
- Financial follow up, planning and strategies for these activities

CE, local infrastructure and site [host country assisted by selected partners]

- Engineering design including cost confirmation/estimate
- Environmental impact assessment and land access
- Specification update of the underground areas including the experimental hall
- Specification update for the surface building for technical scientific and administrative needs

Civil engineering

Pre-lab schedule

1st year: TDR-based estimate confirmation work started by an international team centered on the Pre-lab.

2nd year: Estimate tabulation work, internal review in the latter half of the 2nd year. The review also reports on the progress of technical issues during the preparation period.

3rd year: Conducted an external review and completed scrutiny of costs and risks (this is the end of incorporating cost reduction R & D). Completion of draft of engineering design report (EDR). Prototyping of critical items. Preparing mass-production line.

4th year: EDR publishing (first half), report on progress on technical issues, preparation work for each large bid. Prototyping of critical items. Preparing mass-production line.

IDT WG2 timeline

Example (towards Pre-lab)

- 2022 April: Pre-Lab starts
- 2021 Dec.: IDT ends

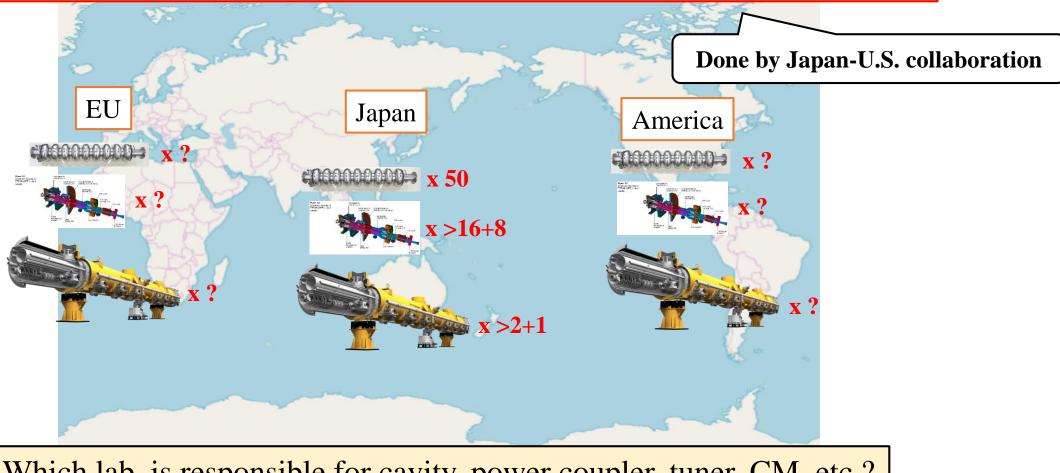
2021, Submission of budget request in each region/lab,
(2021, early Summer: Submission of budget request to MEXT, in case of Japan)

- 2021 Feb.: First draft of budget request (each region/lab.)
- 2020 Dec.: Draft of sharing remaining technical preparation/pre-lab preparation (each region/lab.)
- 2020 Oct.: AWLC

Time

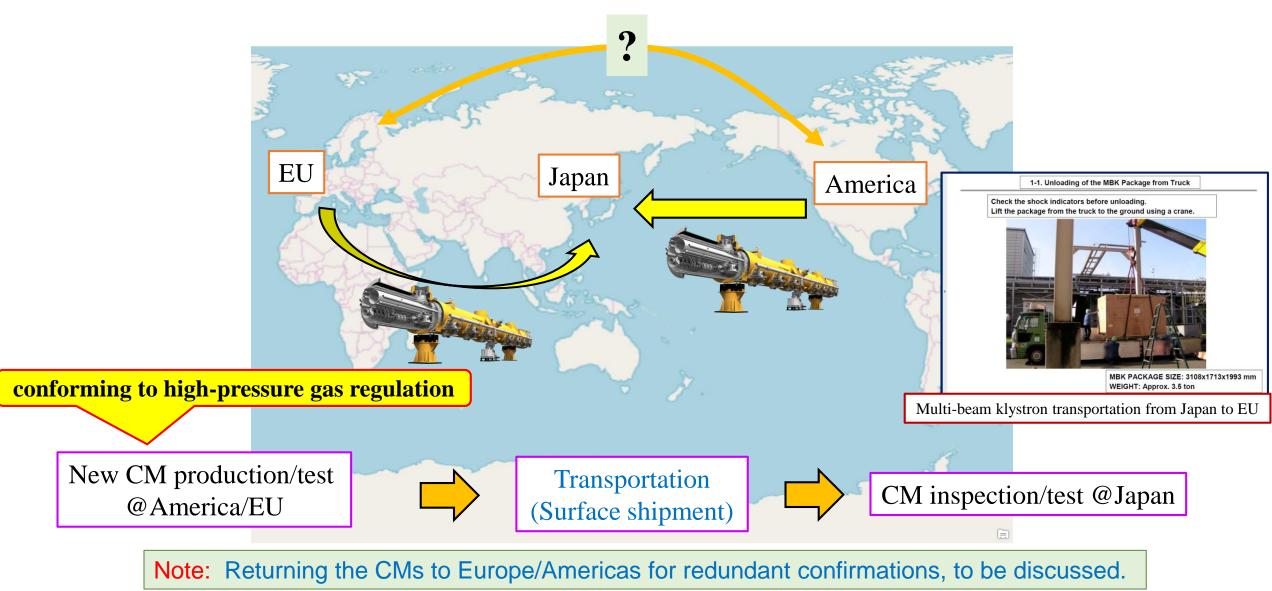
- 2020 Oct.: Information sharing about technical preparation and updating the list
- 2020 Sep.: List of Pre-lab acc. activities/ Human resources/ budget/ schedule

Materials for Pre-lab human resources, budget, technical preparation


• KEK ILC action plan (Jan. 2018, KEK)

https://www.kek.jp/en/newsroom/KEK-ILC_ActionPlan_Addendum-EN%20%281%29.pdf

- "Recommendations on ILC Project Implementation" (Oct. 2019, KEK) <u>https://www.kek.jp/en/newsroom/2019/10/02/1000/</u>
- * Both materials are based on KEK estimate.


Mass production

Before mass production starts, tuner design should be fixed!!

Which lab. is responsible for cavity, power coupler, tuner, CM, etc.? How many cavities, couplers, CMs are produced?

Cryomodule transportation from overseas

In case of Japan (KEK)...

Demonstration of beam acceleration satisfied with ILC spec.

Infrastructure upgrade for hub-lab. is mandatory!

27/Oct/2020

Mass production of cavity

3rd meeting of SRF subgroup in IDT/WG2

Contribution from each lab. (case of E-JADE)

Kirk will make template table after discussion with Michizono-san and Akira Yamamoto-sensei. Please wait a minute!

	ant Agreement No: 645479
Gr	E-JADE
	lerator Development Exchange Programme ska-Curie Research and Innovation Staff Exchange (RIS)
	REPORT
INTERNATIO	HE EUROPEAN DNAL LINEAR COLLIDER PARATION PLAN (EIPP)
	E-Jade.EIPP.v2.12
Document identifier:	
Document identifier: Report release date:	21/06/2018
	21/06/2018 Final/Public

ltem/topic	Brief description	CERN	France Cl	Germany D	Time line
			Fro	Geri	
	Cavity fabrication including forming and EBW technology,	\checkmark			2017-18
	Cavity surface process: High-Q &-G with N-infusion to be demonstrated with				
	statics, using High-G cavities available (# > 10) and fundamental surface		\checkmark	\checkmark	2017-18
SCRF	research				
Sen	Power input-coupler: plug compatible coupler with new ceramic window	\checkmark			2017-19
	requiring no-coating	,			2017-15
	Tuner: Cost-effective tuner w/ lever-arm tuner design	\checkmark	\checkmark		2017-19
	Cavity-string assembly: clean robotic-work for QA/QC.		\checkmark		2017-19
Cryogenics	Design study: optimum layout, emergency/failure mode analysis, He	\checkmark			2017-18
cryogenics	inventory, and cryogenics safety management.				2017-18
HLRF	Klystron: high-efficiency in both RF power and solenoid using HTS	\checkmark			2017- (longer)
	Civil engineering and layout optimization, including Tunnel Optimization Tool	~			2017.10
CFS	(TOT) development, and general safety management.	~			2017-18
Reem dumm	18 MW main beam dump: design study and R&D to seek for an optimum and	~			2017 (langer)
Beam dump	reliable system including robotic work	¥.			2017- (longer)
Positron source	Targetry simulation through undulator driven approach			\checkmark	2017-19
Rad. safety	Radiation safety and control reflected to the tunnel/wall design	\checkmark			2017 – (longer)

- SRF sub-groups need to make similar table for each region (Asia, America).
- Addition to these items, some new contents need to be added to the table.
 - CM transportation, automation, etc.
- And, budget, human resources...

KEK starts development of automation technique

Table 3: Responsibility matrix for the cryomodule production and testing for the ESS.

Table 1: Current common studies between European institutions and Japan relevant for ILC.

	Germany	Fra	nce	Italy		Poland		Russia	Spain		Germany	Fra	ince	l I	taly	Poland	Spain	Swe	eden	UK
	DESY	CEA Saclay	LAL	INFN Milan	IFJ PAN	WUT	NCBJ	BINP	CIEMAT		DESY	CEA	IPNO	Elettra	INFN-LASA	IFJ-PAN	ESS Bilbao	ESS	Uppsala	STFC
Linac										RF systems				√			\checkmark	✓		
Cryomodules	\checkmark	√		\checkmark															1	
SCRF Cavities	√			\checkmark						LLRF									√	
Power Couplers	√		~							Cryomodules		\checkmark	✓							
HOM Couplers							√			SCRF Cavities		\checkmark	✓		\checkmark					\checkmark
Frequency Tuners	\checkmark									Power Couplers		1	1							
Cold Vacuum	√							\checkmark				•	•							
Cavity String Assembly	√	√								HOM couplers										
SC Magnets	\checkmark				√				√	Frequency Tuners		\checkmark	✓							
Infrastructure										Cold Vacuum		\checkmark	✓					\checkmark		
AMTF	\checkmark				√	√		\checkmark		Cavity String Assembly	1 1	1	1							
Cryogenics	√											•	•							
Sites & Buildings										RF Tests (Cavites)	\checkmark									\checkmark
AMTF hall	\checkmark									RF Tests (Cryomodules)		\checkmark	✓			\checkmark		\checkmark	\checkmark	

Table 2: Responsibility matrix for cryomodule production and testing for the European XFE

27/Oct/2020

Work packages of SRF at ILC (it's too early!)

Item	Brief description
1.3 GHz Cavities	Order/fabrication, preparation, surface treatment, VT
Power couplers	Order/fabrication, preparation, assembly, high power test
HOM couplers	Order/fabrication, tuning
Frequency tuners incl. piezo	Order/fabrication,
Cavity string assembly	Overall works in clean room
Cryomodules	Order/fabrication, assembly incl. waveguide system (preparation by HLRF), cold test
Cold vacuum incl. HOM damper	Beamline connection of CM-to-CM, Pumping systems, Open/close gate valves
SC Q/D-magnet + BPM Systems	Order/fabrication, test
Alignment	Cavity-to-cavity, Cavity-to-CM, CM-to-CM
3.9 GHz Cavity System	For bunch compression in injector, Same type as E-XFEL/LCLS-II
650 MHz Cavity System	For damping ring, KEKB type?
Crab Cavity System	For head-on collision, Design not fixed, Discussion is necessary with BDS group
High Level RF System	Klystron, modulator, waveguide, dummy load, variable hybrid, phase shifter, circulator?
Low Level RF System	Construction of control systems incl. feed-forward/feed-back (closed-loop operation)
Cryogenics	For VT and module test, He/N_2 line connection in tunnel
Global CM transfer	CM transfer to Japan by ship
High pressure gas regulation	To satisfy Japanese law
Installation	CM installed into accelerator tunnel
Machine protection (?)	Performance degradation, dark current, radiation security, etc. 3rd meeting of SRF subgroup in IDT/WG2

Questions/Discussions/Comments (memorandum) @2nd meeting

- CM production
 - Existing CM or New CM?
 - In Japan, before production, we have to discuss with KHK (authority of high pressure gas in Japan)
 - During production, inspection by KHK is necessary
- CM transfer
 - Shipping/High pressure gas regulation can be separated
 - Also rechecking cavity performance after shipping
- No cavity vendor in U.S., but same process as LCLS-II can be used
- How many cavities are produced? 20 at minimum. It depends on budget.
- Fabrication (incl. Nb material)/surface treatment to be discussed
- In TDR, second pass was available. How many times in surface treatment is available? It also depends on cost, and to be discussed.
 - Reliability
 - Cost-effectiveness
- Same method of fabrication and surface treatment as technical preparation period has to be used in construction of ILC
- Global CM transfer among Japan/U.S./EU to be discussed (Japan \rightarrow U.S./EU?)
 - For fair international collaboration
- There are strict rules in high pressure gas regulation of Japan
 - It may take longer time to solve this
- How many prototypes do we need?
 - No prototype CM in LCLS-II \rightarrow The construction started immediately (some of existing cavities are used)
 - Three prototype CMs in E-XFEL (PXFEL series)

Translation by Kirk

Questions/Discussions/Comments (memorandum) @1st meeting

- Surface treatment
 - Which surface treatment method (EP, HT) is selected in mass production?
 - Surface treatment method is flexible, rather, plug-compatible design of cavity package should be fixed
 - To investigate yield rate, same method should be used. One method in each region (Japan, US, EU)?
 - Always think about which method is used in mass production (performance, cost effective)
 - Choice as advanced technology should be left, even though new method does not work well at present
- Power coupler
 - Power coupler needs a lot of improvements for ILC
 - D. Kostin will present those issues and some suggestions in AWLC2020
- CM transportation
 - 13 CMs will be transferred from EU to US by plane in PIP-II (2023-2024?)
 - CM of ILC needs very large cage for marine transportation. After arrival at Japan, the cage may be sent back.
 - Cost of aerial transportation is much higher than marine
 - Cost of marine transportation is included into budget of each region
 - Design of cage and supporting jigs is necessary
 - "CM transportation" is not appropriate, then "Global CM transfer" is better?
- Necessary to fix design of tuner/coupler until second year of technical preparation phase when technical review is done
- Additional membership (Michizono-san discussed with Andy and Steiner)
- Budget request of SRF including technical preparation
 - Budget request of subgroup \rightarrow WG1 \rightarrow each laboratory \rightarrow Conclusion of MOU
 - Mass production and Global CM transfer should be summarized to one page for each until end of this year
 - Preparation for conclusion of MOU after Feb/2021
- Introduction of activity of SRF subgroup will be presented in AWLC2020
- Request to upload meeting slide on INDICO

27/Oct/2020

Translation by Kirk