Jet Energy Scale Calibration using $e^+e^- \rightarrow qq\gamma$

Takahiro Mizuno sokendai

Recent Progress

As some odd fluctuations were seen previously, fitting conditions were slightly changed. Binning of the fitted histograms are set to be finer and fitting range is changed.

After seeing that, jet1 and jet2 are plotted on the same point.

Recent Progress

As some odd fluctuations were seen previously, fitting conditions were slightly changed. Binning of the fitted histograms are set to be finer and fitting range is changed.

After seeing that, jet1 and jet2 are plotted on the same point.

M3 Energy dependence

Mean value of the core gaussian is order of 10⁻⁴ independent on the jet energy. Sigma value is smaller in the higher energy.

M3 Polar angle dependence

Mean of the Fitting Gaussian

Sigma of the Fitting Gaussian

Forward jet makes slight positive bias on the core gaussian and barrel region jet makes slight negative bias on the core gaussian.

Mean value of the core gaussian is order of 10⁻⁴. Negative bias of the core gaussian is smaller in the b-jets.

PFO Energy dependence

Mean value of the core gaussian is order of 10⁻³ independent on the jet energy. Sigma value is smaller in the higher energy.

PFO Polar angle dependence

Mean of the Fitting Gaussian

Sigma of the Fitting Gaussian

PFO Flavor dependence Showing dependence on flavor of the seed of the jet Mean of the Fitting Gaussian Sigma of the Fitting Gaussian

9

M3 Energy dependence

Mean value of the core gaussian is order of 10⁻⁴ independent on the jet energy. Sigma value is smaller in the higher energy.

M3 Polar angle dependence

Forward jet makes slight positive bias on the core gaussian and barrel region jet makes slight negative bias on the core gaussian.

Mean value of the core gaussian is order of 10⁻⁴. Negative bias of the core gaussian is smaller in the b-jets.

PFO Energy dependence

Mean value of the core gaussian is order of 10⁻³ independent on the jet energy. Sigma value is smaller in the higher energy.

PFO Polar angle dependence

Calibration Uncertainty

Calibration uncertainty := $\sqrt{(\Delta \mu_{Detector})^2 + (\Delta \mu_{Reconstructed})^2}$ Square root of the squared sum of the error of the mean

Relative uncertainty

Absolute uncertainty

We can calibrate the jet energy scale with about 10-4 accuracy, which corresponds to several MeV.

Conclusion & Next Step

- Calibration uncertainty is calculated as a function of energy. It is <10-4 accuracy which corresponds to several MeV.
- In the energy dependence plot, horizontal axis (energy) is now from Method3 reconstructed. I will change this into PFO.
- Derive the calibration constant as a function of energy and theta.

Backup

Jet energy distribution

Jet mass distribution

Jet1

Jet2

Correct photon selection

Correct photon selection cut 1

Cut1: M_{2j} <125 GeV && E_{vis} >200 GeV

Correct photon selection cut 2

Wrong photons are near jet axes

Cut2: $\cos\theta(\text{Jet1} \cdot \gamma) < 0.95 \&\& \cos\theta(\text{Jet2} \cdot \gamma) < 0.95$

$M_{2j} \ distribution \ after \ all \ but \ M_{2j} \ cut$

Source of the bias

Source of the bias is investigated. -> 2 major source are found.

Source (A): Beam energy spread

When all inputs are all MCtruth,

Toy MC Simulation

Beam energy spread causes negative bias in jet 1 reconstructed energy. Positive bias in Jet 2 is also confirmed as well.

Source (B): Error of the jet mass inputs²⁷

Large dependence on both jet 1 mass and jet 2 mass input deviations. If <8 × 10⁻⁴ accuracy is necessary, compensation to the reconstructed jet energy should be introduced.