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Strongly established with interesting shortcomings

Over the decades experiments

and every missing pieces
Verified the facts that
they belong to this family

have found each

Finally at the Large Hadron collider
Higgs has been observed

Its properties must be verified

Few of the very interesting anomalies :
Tiny neutrino mass and flavor mixings
Relic abundance of dark matter . . .

H

SM can not explain them�2

Neutrino oscillation experiment :
SNO, Super − K, etc .

Nature : Majorana/ Dirac
Ordering : Normal/Inverted
Nature of the mixing between the
mass and the flavor eigenstates

Unkown



There is a wide variety of neutrino mass models
The predicted models extend the SM minimally
At the tree level SM can be extended by Singlet fermions

seesaw mechanism
inverse seesaw mechanism

Alternative ideas extending the Standard Model

Right handed neutrinos

Models of Neutrino

SU(2) triplet scalar : type − II seesaw

SU(2) triplet fermion : type − III seesaw

One − loop and even at 2/3 − loop models also exist
For example : Ma − model, Zee − Model, Zee − Babu model, BNT, KNT, etc .

�3
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to explain the origin of neutrino mass



Particle content 

3 generations of 
SM singlet right handed  
neutrinos (anomaly free)
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Table 1. The particle content of the model including the three generations of the right-handed
neutrinos (N i

R, i = 1, 2, 3) and a new scalar field (�).

The Yukawa sector of the model can be written in a gauge invariant way as
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where H̃ ⌘ i⌧
2
H

⇤ and C is the charge conjugate. Due to the gauge invariance the Yukawa

interactions impose

x
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Further more using Eq. 2.1 the solutions to these conditions are listed in Table 1. Finally

we obtain that the charges of the particles are controlled by the two parameters, xH

and x� only. Hence we conclude that the U(1)X gauge group can be defined as a linear

combination of the SM U(1)Y and the U(1)B�L. Putting xH = 0 and x� = 1 we can

be reduced to the B�L scenario. Therefore without the loss of generality we fix x� = 1

in our analysis through out the paper. The fourth and the fifth terms in Eq. 2.2 are the

Dirac and Majorana Yukawa terms. Without the loss of generality we use a diagonal basis

for the Majorana Yukawa coupling. After the breaking of theU(1)X and the electroweak

symmetries, the U(1)X gauge boson (Z 0) mass, Majorana masses of the RHNs and neutrino

Dirac masses are generated:
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Charges before  
the anomaly cancellations

Charges after 
Imposing the  

anomaly 
cancellations

mZ′� = 2 gXvΦ

xH, xΦ will appear
the coupling with Z′�
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Table 1: Particle content of the minimal U(1)X model, where i, j = 1, 2, 3 are the generation
indices. Without loss of generality, we fix x� = 1.

group, SU(3)c⇥SU(2)L⇥U(1)Y⇥U(1)X , where U(1)X is realized as a linear combination of the
SM U(1)Y and U(1)B�L symmetry (the so-called non-exotic U(1) extension of the SM [21]).
The particle content of the model is listed in Table 1. The structure of the model is the same
as the minimal B � L model except for the U(1)X charge assignment. In addition to the SM
particle content, this model includes three generations of RHNs required for the cancellation
of the gauge and the mixed-gravitational anomalies, a new Higgs field (�) which breaks the
U(1)X gauge symmetry, and a U(1)X gauge boson (Z 0). The U(1)X charges are defined in
terms of two real parameters xH and x�, which are the U(1)X charges associated with H and
�, respectively. In this model x� always appears as a product with the U(1)X gauge coupling
and is not an independent free parameter, which we fix to be x� = 1 throughout this letter.
Hence, U(1)X charges of the particles are defined by a single free parameter xH . Note that this
model is identical to the minimal B � L model in the limit of xH = 0.

The Yukawa sector of the SM is then extended to include
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where the first and second terms are the Dirac and Majorana Yukawa couplings. Here we
use a diagonal basis for the Majorana Yukawa coupling without loss of generality. After the
U(1)X and the EW symmetry breakings, U(1)X gauge boson mass, the Majorana masses for
the RHNs, and neutrino Dirac masses are generated:
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where gX is the U(1)X gauge coupling, v� is the � VEV, vh = 246 GeV is the SM Higgs VEV,
and we have used the LEP constraint [23, 24] v�2

� vh2.
Let us now consider the RHN production via Z 0 decay. The Z 0 boson partial decay widths

into a pair of SM chiral fermions (fL) and a pair of the Majorana RHNs, respectively, are given
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0 is the U(1)X gauge coupling, v� is the VEV of � and vSM = 246 GeV is the

SM Higgs VEV. Using the LEP constraints from [37, 38] we use v� >> vSM. In this

model through the U(1)X symmetry breaking, the Majorana mass terms of the RHNs are

generated which induce the seesaw mechanism to generate the light neutrino mass. Hence

the neutrino mass matrix is obtained as
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| << 1 and diagonalizing the neutrino mass matrix in Eq. 2.5 we

obtain the light neutrino mass eigenvalue as
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Due to the nonzero U(1)X charges the Z 0 boson interacts with the particles in the same way

as it does in the B�L scenario [22, 25, 29, 34, 39–44], however, the CV and CA components

of the interactions between the Z
0 and the other particles in the model will depend upon

the xH and x� parameters. As we have already used x� = 1, the corresponding partial

decay widths of Z 0 into the fermions will depend upon xH .

The interaction between the Z
0 with the quarks can be written as
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where `L (eR) is the left (right) handed lepton and the Q
`
xL
(Q`

xL
) is the U(1)X charge

for the left (right) handed lepton. All these charges are given in Tab. 2.1. After writing

the model under the U(1)X and B�L frameworks respectively in the UFO [45] format,

we study the pp ! Z
0 ! `

+
`
� for ` = e, µ process where the U(1)X coupling g

0 is

involved. Validating our analysis with the observed CMS [9] and ATLAS [10] bounds of

heavy resonance production under the SSM scenario [46], we recast the bounds on the g
0

for the U(1)X (xH = �1.2, x� = 1) and B�L (xH = 0, x� = 1) scenarios respectively.

The corresponding bounds are given in Fig. 1. We finally use these bounds for the further

analysis of the heavy neutrino production from Z
0 in our work. A diagram showing sterile

neutrino production and decay at the LHC considered can be seen in Figure 2. The

production cross-section of the heavy neutrino pair and the decay can be seen in Figure 3.

3 LHC sensitivity with displaced vertex searches (initial part of this

section has to be modified later)

For our study, we produce two UFO [45] models, based on the B�Lmodel in [8]. We adapt

it so that the light-heavy neutrino mixing and the sterile neutrino masses are treated as

– 4 –

where g
0 is the U(1)X gauge coupling, v� is the VEV of � and vSM = 246 GeV is the

SM Higgs VEV. Using the LEP constraints from [37, 38] we use v� >> vSM. In this

model through the U(1)X symmetry breaking, the Majorana mass terms of the RHNs are

generated which induce the seesaw mechanism to generate the light neutrino mass. Hence

the neutrino mass matrix is obtained as

m⌫ =

 
0 MD

M
T

D
MN

!
(2.5)

Considering |M↵�

D
/M

↵

N
| << 1 and diagonalizing the neutrino mass matrix in Eq. 2.5 we

obtain the light neutrino mass eigenvalue as

m⌫ ' �MDM
�1
N

M
T

D (2.6)

Due to the nonzero U(1)X charges the Z 0 boson interacts with the particles in the same way

as it does in the B�L scenario [22, 25, 29, 34, 39–44], however, the CV and CA components

of the interactions between the Z
0 and the other particles in the model will depend upon

the xH and x� parameters. As we have already used x� = 1, the corresponding partial

decay widths of Z 0 into the fermions will depend upon xH .

The interaction between the Z
0 with the quarks can be written as

Lint = �g
0(qL�µQ

q

xL
qL + qR�µQ

q

xR
qR)Z

0
µ (2.7)

where qL (qR) is the left (right) handed quark and Q
q
xL (Qq

xR) is the U(1)X charge for the

left (right) handed quark. The corresponding interaction between the lepton sector and Z
0

can be written as

Lint = �g
0(`L�µQ

`

xL
`L + eR�µQ

`

xR
eR)Z

0
µ (2.8)

where `L (eR) is the left (right) handed lepton and the Q
`
xL
(Q`

xL
) is the U(1)X charge

for the left (right) handed lepton. All these charges are given in Tab. 2.1. After writing

the model under the U(1)X and B�L frameworks respectively in the UFO [45] format,

we study the pp ! Z
0 ! `

+
`
� for ` = e, µ process where the U(1)X coupling g

0 is

involved. Validating our analysis with the observed CMS [9] and ATLAS [10] bounds of

heavy resonance production under the SSM scenario [46], we recast the bounds on the g
0

for the U(1)X (xH = �1.2, x� = 1) and B�L (xH = 0, x� = 1) scenarios respectively.

The corresponding bounds are given in Fig. 1. We finally use these bounds for the further

analysis of the heavy neutrino production from Z
0 in our work. A diagram showing sterile

neutrino production and decay at the LHC considered can be seen in Figure 2. The

production cross-section of the heavy neutrino pair and the decay can be seen in Figure 3.

3 LHC sensitivity with displaced vertex searches (initial part of this

section has to be modified later)

For our study, we produce two UFO [45] models, based on the B�Lmodel in [8]. We adapt

it so that the light-heavy neutrino mixing and the sterile neutrino masses are treated as

– 4 –

U(1)X  breaking

Seesaw mechnism�4

Dobrescu, Fox; AD, Okada, Raut;Cox, Han, Yanagida; AD, Dev, Okada;
Chiang, Cottin, AD, Mandal; AD, Takahashi, Oda, Okada



FIG. 10. Heavy neutrino (N) pair production processes at the LHC from the Z
0 with di↵erent

final states. The heavy neutrino (N) decays into di↵erent channels such as same sign dilepton plus

two fat-jets (top, left), trilepton plus missing momentum and a fat-jet (top, right) and four lepton

plus missing momentum signal (bottom) which can produce a lepton jet like signature from each

N . All combination of charges have been considered where they are required.

being normalized by N0 =
P
i

pi,TR where i runs over the constituent particles in the

jet. Here pi,T are the transverse momenta of the constituent particles. �Rik is defined

as
p

(�⌘)2
ik
+ (��)2

ik
which is the ⌘ � � distance between a candidate k-subjet and a

constituent particle i and R is the jet radius. ⌧N tries to quantify if the original jet

consists of N daughter subjets. A low value of ⌧N predicts that the original jet consists

of N or fewer daughter subjets. Hence the information from ⌧N can potentially be

used to identify an object which has an N-prong hadronic decay. It has been shown in

[85, 86] that a better discriminant to tag an N-subjet object is to consider the ratios

⌧N/⌧N�1. For the W-tagging the W yields two subjets which are collimated and hence

the variable of interest is considered to be ⌧
J

21 = ⌧2/⌧1.

(ii) jet mass: After the suitable jet grooming the mass of the fat-jet (MJ) becomes another

important variable which is useful to distinguish the signal from the SM background.

At each iteration in a sequential recombination jet algorithm, in the E-scheme, the

mother proto jet four-momentum is the vector sum of the daughter proto jet four-
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suppression of the Higgs signal strength in the other SM
channels. Therefore, precision measurements of the Higgs
boson properties could yield important constraints on the
sterile neutrino mass and mixing parameters.
We illustrate this effect by analyzing the Higgs boson

production and decay at the LHC, followed by the sterile
neutrino decay to a charged lepton and W boson, which
mimics the SM h → WW! channel. So, using the

ffiffiffi
s

p
¼

8 TeV LHC data in the h → WW! search channel, which is
largely consistent with the SM expectations, we derive
constraints on the active-sterile neutrino mixing parameter
VlN as a function of the sterile neutrino mass. Based on this
analysis, we also make conservative predictions for the
future limits at the

ffiffiffi
s

p
¼ 14 TeV high-luminosity LHC as

well as a futuristic
ffiffiffi
s

p
¼ 100 TeV hadron collider, such

as future circular collider-proton-proton (FCC-hh) or super
proton-proton collider (SPPC). We find that our limits
could be comparable to, or in some cases better than, the
current best limits for sterile neutrino masses in the vicinity
of the Higgs boson mass. Our study includes two pos-
sibilities for the W decay, namely, (i) the leptonic mode
leading to a 2l2ν final state and (ii) the hadronic mode
leading to a lνjj final state. We find that the leptonic mode
has better sensitivity at the LHC, mainly due to the smaller
background, as compared to the hadronic decay channel.
The rest of the paper is organized as follows. In Sec. II,

we review the decay modes of the sterile neutrino both
above and below the SM gauge boson mass scales. In
Sec. III, we discuss the sterile neutrino production in SM
Higgs boson decay and analyze the resultant 2l2ν final
state to derive constraints on the sterile neutrino parameter
space. In Sec. IV, we analyze a new final state from the
sterile neutrino production, namely, the lνjj channel and
its discovery prospects at

ffiffiffi
s

p
¼ 14 and 100 TeV hadron

colliders. Our conclusions are given in Sec. V.

II. STERILE NEUTRINO DECAY

We consider the minimal singlet seesaw extension of
the SM, where the production and decay properties of the
sterile neutrino are governed by its mass and mixing with
the active neutrinos. We do not want to go into the specific
details of neutrino mass models but keep our discussion
generic, regardless of whether the sterile neutrinos are
Majorana or pseudo-Dirac particles. In this sense, our
results are applicable to all low-scale singlet seesaw models
with the SM gauge group, including the minimal type-I
seesaw [2–7], as well as its variants, such as the inverse
[8,9], linear [10,11] and generalized [12,13] seesaws.
Due to the active-sterile neutrino mixing, a light neutrino

flavor eigenstate (νl) is a linear combination of the light
(νm) and heavy (Nm) neutrino mass eigenstates,

νl ≃Ulmνm þ VlnNn; ð1Þ

where U is the 3 × 3 light neutrino mixing matrix (which is
the same as the Pontecorvo-Maki-Nakagawa-Sakata mixing

matrix to leading order, if we ignore the nonunitarity effects)
and V ≃MDM−1

N is the active-sterile mixing parameter.
The charged-current (CC) interaction in the lepton sector is
then given by

LCC ¼ −
gffiffiffi
2

p Wμl̄γμPL½Ulmνm þ VlnNn ' þ H:c:; ð2Þ

where g is the SUð2ÞL gauge coupling andPL ¼ ð1 − γ5Þ=2
is the left-chiral projection operator. Similarly, the neutral-
current (NC) interaction is given by

LNC ¼ − g
2 cos θw

Zμ½ðU†UÞmn ν̄mγ
μPLνn

þ ðU†VÞmn ν̄mγ
μPLNn þ ðV†VÞmnN̄mγμPLNn '

þ H:c:; ð3Þ

where θw is the weak mixing angle. Thus, the interactions
of the sterile neutrino with the SM gauge sector are all
suppressed by powers of the mixing matrix V.
Similarly, the relevant Yukawa interaction is given by

LY ⊃ −YDlm
L̄lϕNm þ H:c:; ð4Þ

where L and ϕ are the SUð2ÞL lepton and Higgs doublets,
respectively. After electroweak symmetry breaking by the
vacuum expectation value of the Higgs doublet, hϕ0i ¼ v,
we get the Dirac mass term MD ¼ vYD. So the Yukawa
coupling of the sterile neutrino to the SM Higgs is given by
YD ¼ VMN=v, which is also suppressed by V.
For simplicity, we will assume that only the lightest

heavy neutrino mass eigenstate (denoted here simply by N)
is kinematically accessible at colliders and denote the
corresponding mixing parameter as simply VlN, which is
the only free parameter in our phenomenological analysis,
apart from the sterile neutrino massMN . From Eqs. (2), (3)
and (4), we see that there are three decay modes for the
sterile neutrino, if kinematically allowed:N → l−Wþ, νlZ,
νlh, where h is the SM Higgs boson (the only physical
scalar remnant of the doublet ϕ). The corresponding partial
decay widths are, respectively, given by

ΓðN → l−WþÞ ¼ g2jVlN j2

64π
M3

N

M2
W

"
1−

M2
W

M2
N

#
2
"
1þ 2M2

W
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N

#
;

ð5Þ

ΓðN → νlZÞ ¼
g2jVlN j2

128π
M3

N

M2
W

"
1 −

M2
Z

M2
N

#
2
"
1þ 2M2

Z

M2
N

#
;

ð6Þ

ΓðN1 → νlhÞ ¼
jVlN j2

128π
M3

N

M2
W

"
1 −

M2
h

M2
N

#
2

: ð7Þ

The total decay width is just the sum of the above three
partial widths for each flavor and summed over all lepton
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Impression/s at the ILC

where !LHC is the cross section given in Eq. (13).
Similarly, the production cross section at the ILC is

!ðeþ e# ! "#NiÞ ¼ !ILCjR#ið$;%; yÞj2; (37)

where !ILC is given in Eq. (15), and we have used the
approximation N yR ’ Uy

MNSR because j&#'j & 1 as
discussed in the previous section. The partial decay widths
for the process Ni ! ‘##W

þ ="#Z="#h are obtained by
multiplying Eq. (14) by the factor jR#ið$;%; yÞj2.

Figure 5 shows the results of the parameter scan for the
heavy neutrino production cross section with the trilepton
final states at the LHC. Each dot satisfies the experimental
constraints on all the &-matrix elements. The first (second)
column shows the results for the NH (IH) case. In the first
(second) row, the results are shown as a function of $ (y)
for the final state with two electrons, while the correspond-
ing results for the final state with two muons are shown in
the third and fourth rows. Comparing the results with those
for the simple parametrizations, the signal cross sections
for the NH case receive significant enhancements for a
certain parameter set, while for the IH case, we only have
an enhancement by a factor 2–4. The maximum signal
cross sections we can achieve in the general parametriza-
tion are listed on Table V. Interestingly, the maximum cross
section for the NH case with a final state including two
muons can even be larger than the one for the FD case.

Figure 6 shows the cross section for the process eþ e# !
"N, followed by the decays N ! ‘W andW ! q !q0, at the
ILC with

ffiffiffi
s

p ¼ 500 GeV. Here, we have fixed the heavy
neutrino mass to be 150 GeV. Each dot satisfies the experi-
mental constraints on all the &-matrix elements. The first
(second) column shows the results for the NH (IH) case.
In the first (second) row, the results are shown as a function
of $ (y) for the case of ‘ ¼ e, while the corresponding
results for the case of ‘ ¼ ( are shown in the third and
fourth rows. Similarly to the LHC results, we have found
significant enhancements for the NH case compared with
the results for the simple parametrizations, while we have
no significant enhancement for the IH case. The maximum
signal cross sections we can achieve in the general parame-
trization are listed on Table VI. The maximum cross sec-
tion for the NH case with ‘ ¼ ( can even be larger than the
one for the FD case. We have performed the same analysis
also for the ILC with

ffiffiffi
s

p ¼ 1 TeV. The maximum signal
cross sections in this case are listed in Table VII. We have
about a 30%–40% enhancement in the cross sections by
increasing the collider energy.

The maximum signal cross sections for
ffiffiffi
s

p ¼ 1 TeV and
the same luminosityL ¼ 500 fb# 1 are listed in Table VII.
We have only listed e þ jj and ( þ jj signal cross
sections as functions of $, % and y.
From Tables VI and VII the signal cross sections for

( þ jj in NH dominates over IH by an order of magnitude
for both the collider energies,

ffiffiffi
s

p ¼ 500 GeV and
ffiffiffi
s

p ¼
1 TeV. The signal cross sections for e þ jj in NH are
almost the same as those in the IH case for both the collider
energies,

ffiffiffi
s

p ¼ 500 GeV and
ffiffiffi
s

p ¼ 1 TeV. The (( case
cross sections at

ffiffiffi
s

p ¼ 500 GeV and
ffiffiffi
s

p ¼ 1 TeV are
some factors greater than the corresponding FD cases.

VI. CONCLUSIONS

We have studied the inverse seesaw scenario and the
signature of the pseudo-Dirac heavy neutrino production at
the LHC and ILC. In the inverse seesaw scenario, the light
neutrino masses are realized by small lepton-number-
violating parameters, and hence the SM singlet neutrinos
have sizable Dirac Yukawa couplings with the SM lepton
doublets and Higgs doublet even for mass scales at the TeV
scale or smaller. As a result, the heavy neutrinos can be
produced at the LHC and ILC. Based on a concrete model
realizing the inverse seesaw in the context of the NMSSM,
we have fixed the model parameters so as to satisfy the
experimental results such as the neutrino oscillation data,
the precision measurements of the weak boson decays, and
the lepton-flavor-violating decays of charged leptons. We
have considered two typical cases for the neutrino flavor
structures of themodel, namely, the FND andFDcases.With
the fixed parameters, we have calculated the production
cross sections of the heavy neutrinos at the LHC and ILC.
First we have considered simple parametrizations with

all zero CP phases. For the LHC with
ffiffiffi
s

p ¼ 14 TeV, we
have analyzed the productions of the heavy neutrinos with a
degenerate 100 GeV mass, providing the trilepton final
states with the like-sign electrons or muons. After imposing
suitable cuts, we have found that the 5-! statistical signifi-
cance of the signal events over the SM background can be
achieved for a luminosity around 11 fb# 1 in the FD case.
On the other hand, the production cross sections in the FND
case are too small to observe the heavy neutrino signal.
We have also studied the heavy neutrino production

at the ILC with
ffiffiffi
s

p ¼ 500 GeV–1 TeV, where the final
state with a single, isolated electron and a dijet with large
missing energy is considered. For the luminosity

ffiffiffi
s

p ¼
500 fb# 1, we can obtain clear signatures of the heavy
neutrinos with mass 150 GeV for the IH mass spectrum
in the FND case and the FD case. On the other hand, the
significance for the NHmass spectrum in the FND case has
been found to be low. Since we can expect similar efficien-
cies of the signal and SM background for the final states
with different lepton flavors, muon or tau, the heavy neu-
trinos can be detected with a large statistical significance in
the modes for all FND and FD cases.

TABLE V. The maximum LHC cross sections for the final
states with two electrons and two muons, respectively, at the
LHC with

ffiffiffi
s

p ¼ 14 TeV.
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where !LHC is the cross section given in Eq. (13).
Similarly, the production cross section at the ILC is

!ðeþ e# ! "#NiÞ ¼ !ILCjR#ið$;%; yÞj2; (37)

where !ILC is given in Eq. (15), and we have used the
approximation N yR ’ Uy

MNSR because j&#'j & 1 as
discussed in the previous section. The partial decay widths
for the process Ni ! ‘##W

þ ="#Z="#h are obtained by
multiplying Eq. (14) by the factor jR#ið$;%; yÞj2.

Figure 5 shows the results of the parameter scan for the
heavy neutrino production cross section with the trilepton
final states at the LHC. Each dot satisfies the experimental
constraints on all the &-matrix elements. The first (second)
column shows the results for the NH (IH) case. In the first
(second) row, the results are shown as a function of $ (y)
for the final state with two electrons, while the correspond-
ing results for the final state with two muons are shown in
the third and fourth rows. Comparing the results with those
for the simple parametrizations, the signal cross sections
for the NH case receive significant enhancements for a
certain parameter set, while for the IH case, we only have
an enhancement by a factor 2–4. The maximum signal
cross sections we can achieve in the general parametriza-
tion are listed on Table V. Interestingly, the maximum cross
section for the NH case with a final state including two
muons can even be larger than the one for the FD case.

Figure 6 shows the cross section for the process eþ e# !
"N, followed by the decays N ! ‘W andW ! q !q0, at the
ILC with

ffiffiffi
s

p ¼ 500 GeV. Here, we have fixed the heavy
neutrino mass to be 150 GeV. Each dot satisfies the experi-
mental constraints on all the &-matrix elements. The first
(second) column shows the results for the NH (IH) case.
In the first (second) row, the results are shown as a function
of $ (y) for the case of ‘ ¼ e, while the corresponding
results for the case of ‘ ¼ ( are shown in the third and
fourth rows. Similarly to the LHC results, we have found
significant enhancements for the NH case compared with
the results for the simple parametrizations, while we have
no significant enhancement for the IH case. The maximum
signal cross sections we can achieve in the general parame-
trization are listed on Table VI. The maximum cross sec-
tion for the NH case with ‘ ¼ ( can even be larger than the
one for the FD case. We have performed the same analysis
also for the ILC with

ffiffiffi
s

p ¼ 1 TeV. The maximum signal
cross sections in this case are listed in Table VII. We have
about a 30%–40% enhancement in the cross sections by
increasing the collider energy.

The maximum signal cross sections for
ffiffiffi
s

p ¼ 1 TeV and
the same luminosityL ¼ 500 fb# 1 are listed in Table VII.
We have only listed e þ jj and ( þ jj signal cross
sections as functions of $, % and y.
From Tables VI and VII the signal cross sections for

( þ jj in NH dominates over IH by an order of magnitude
for both the collider energies,
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s

p ¼ 500 GeV and
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s

p ¼
1 TeV. The signal cross sections for e þ jj in NH are
almost the same as those in the IH case for both the collider
energies,
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p ¼ 500 GeV and
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s

p ¼ 1 TeV. The (( case
cross sections at
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p ¼ 500 GeV and
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p ¼ 1 TeV are
some factors greater than the corresponding FD cases.

VI. CONCLUSIONS

We have studied the inverse seesaw scenario and the
signature of the pseudo-Dirac heavy neutrino production at
the LHC and ILC. In the inverse seesaw scenario, the light
neutrino masses are realized by small lepton-number-
violating parameters, and hence the SM singlet neutrinos
have sizable Dirac Yukawa couplings with the SM lepton
doublets and Higgs doublet even for mass scales at the TeV
scale or smaller. As a result, the heavy neutrinos can be
produced at the LHC and ILC. Based on a concrete model
realizing the inverse seesaw in the context of the NMSSM,
we have fixed the model parameters so as to satisfy the
experimental results such as the neutrino oscillation data,
the precision measurements of the weak boson decays, and
the lepton-flavor-violating decays of charged leptons. We
have considered two typical cases for the neutrino flavor
structures of themodel, namely, the FND andFDcases.With
the fixed parameters, we have calculated the production
cross sections of the heavy neutrinos at the LHC and ILC.
First we have considered simple parametrizations with

all zero CP phases. For the LHC with
ffiffiffi
s

p ¼ 14 TeV, we
have analyzed the productions of the heavy neutrinos with a
degenerate 100 GeV mass, providing the trilepton final
states with the like-sign electrons or muons. After imposing
suitable cuts, we have found that the 5-! statistical signifi-
cance of the signal events over the SM background can be
achieved for a luminosity around 11 fb# 1 in the FD case.
On the other hand, the production cross sections in the FND
case are too small to observe the heavy neutrino signal.
We have also studied the heavy neutrino production

at the ILC with
ffiffiffi
s

p ¼ 500 GeV–1 TeV, where the final
state with a single, isolated electron and a dijet with large
missing energy is considered. For the luminosity

ffiffiffi
s

p ¼
500 fb# 1, we can obtain clear signatures of the heavy
neutrinos with mass 150 GeV for the IH mass spectrum
in the FND case and the FD case. On the other hand, the
significance for the NHmass spectrum in the FND case has
been found to be low. Since we can expect similar efficien-
cies of the signal and SM background for the final states
with different lepton flavors, muon or tau, the heavy neu-
trinos can be detected with a large statistical significance in
the modes for all FND and FD cases.

TABLE V. The maximum LHC cross sections for the final
states with two electrons and two muons, respectively, at the
LHC with
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where !LHC is the cross section given in Eq. (13).
Similarly, the production cross section at the ILC is

!ðeþ e# ! "#NiÞ ¼ !ILCjR#ið$;%; yÞj2; (37)

where !ILC is given in Eq. (15), and we have used the
approximation N yR ’ Uy

MNSR because j&#'j & 1 as
discussed in the previous section. The partial decay widths
for the process Ni ! ‘##W

þ ="#Z="#h are obtained by
multiplying Eq. (14) by the factor jR#ið$;%; yÞj2.

Figure 5 shows the results of the parameter scan for the
heavy neutrino production cross section with the trilepton
final states at the LHC. Each dot satisfies the experimental
constraints on all the &-matrix elements. The first (second)
column shows the results for the NH (IH) case. In the first
(second) row, the results are shown as a function of $ (y)
for the final state with two electrons, while the correspond-
ing results for the final state with two muons are shown in
the third and fourth rows. Comparing the results with those
for the simple parametrizations, the signal cross sections
for the NH case receive significant enhancements for a
certain parameter set, while for the IH case, we only have
an enhancement by a factor 2–4. The maximum signal
cross sections we can achieve in the general parametriza-
tion are listed on Table V. Interestingly, the maximum cross
section for the NH case with a final state including two
muons can even be larger than the one for the FD case.

Figure 6 shows the cross section for the process eþ e# !
"N, followed by the decays N ! ‘W andW ! q !q0, at the
ILC with

ffiffiffi
s

p ¼ 500 GeV. Here, we have fixed the heavy
neutrino mass to be 150 GeV. Each dot satisfies the experi-
mental constraints on all the &-matrix elements. The first
(second) column shows the results for the NH (IH) case.
In the first (second) row, the results are shown as a function
of $ (y) for the case of ‘ ¼ e, while the corresponding
results for the case of ‘ ¼ ( are shown in the third and
fourth rows. Similarly to the LHC results, we have found
significant enhancements for the NH case compared with
the results for the simple parametrizations, while we have
no significant enhancement for the IH case. The maximum
signal cross sections we can achieve in the general parame-
trization are listed on Table VI. The maximum cross sec-
tion for the NH case with ‘ ¼ ( can even be larger than the
one for the FD case. We have performed the same analysis
also for the ILC with

ffiffiffi
s

p ¼ 1 TeV. The maximum signal
cross sections in this case are listed in Table VII. We have
about a 30%–40% enhancement in the cross sections by
increasing the collider energy.

The maximum signal cross sections for
ffiffiffi
s

p ¼ 1 TeV and
the same luminosityL ¼ 500 fb# 1 are listed in Table VII.
We have only listed e þ jj and ( þ jj signal cross
sections as functions of $, % and y.
From Tables VI and VII the signal cross sections for

( þ jj in NH dominates over IH by an order of magnitude
for both the collider energies,

ffiffiffi
s

p ¼ 500 GeV and
ffiffiffi
s

p ¼
1 TeV. The signal cross sections for e þ jj in NH are
almost the same as those in the IH case for both the collider
energies,

ffiffiffi
s

p ¼ 500 GeV and
ffiffiffi
s

p ¼ 1 TeV. The (( case
cross sections at

ffiffiffi
s

p ¼ 500 GeV and
ffiffiffi
s

p ¼ 1 TeV are
some factors greater than the corresponding FD cases.

VI. CONCLUSIONS

We have studied the inverse seesaw scenario and the
signature of the pseudo-Dirac heavy neutrino production at
the LHC and ILC. In the inverse seesaw scenario, the light
neutrino masses are realized by small lepton-number-
violating parameters, and hence the SM singlet neutrinos
have sizable Dirac Yukawa couplings with the SM lepton
doublets and Higgs doublet even for mass scales at the TeV
scale or smaller. As a result, the heavy neutrinos can be
produced at the LHC and ILC. Based on a concrete model
realizing the inverse seesaw in the context of the NMSSM,
we have fixed the model parameters so as to satisfy the
experimental results such as the neutrino oscillation data,
the precision measurements of the weak boson decays, and
the lepton-flavor-violating decays of charged leptons. We
have considered two typical cases for the neutrino flavor
structures of themodel, namely, the FND andFDcases.With
the fixed parameters, we have calculated the production
cross sections of the heavy neutrinos at the LHC and ILC.
First we have considered simple parametrizations with

all zero CP phases. For the LHC with
ffiffiffi
s

p ¼ 14 TeV, we
have analyzed the productions of the heavy neutrinos with a
degenerate 100 GeV mass, providing the trilepton final
states with the like-sign electrons or muons. After imposing
suitable cuts, we have found that the 5-! statistical signifi-
cance of the signal events over the SM background can be
achieved for a luminosity around 11 fb# 1 in the FD case.
On the other hand, the production cross sections in the FND
case are too small to observe the heavy neutrino signal.
We have also studied the heavy neutrino production

at the ILC with
ffiffiffi
s

p ¼ 500 GeV–1 TeV, where the final
state with a single, isolated electron and a dijet with large
missing energy is considered. For the luminosity

ffiffiffi
s

p ¼
500 fb# 1, we can obtain clear signatures of the heavy
neutrinos with mass 150 GeV for the IH mass spectrum
in the FND case and the FD case. On the other hand, the
significance for the NHmass spectrum in the FND case has
been found to be low. Since we can expect similar efficien-
cies of the signal and SM background for the final states
with different lepton flavors, muon or tau, the heavy neu-
trinos can be detected with a large statistical significance in
the modes for all FND and FD cases.

TABLE V. The maximum LHC cross sections for the final
states with two electrons and two muons, respectively, at the
LHC with
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p ¼ 14 TeV.
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branching ratios
where !LHC is the cross section given in Eq. (13).
Similarly, the production cross section at the ILC is

!ðeþ e# ! "#NiÞ ¼ !ILCjR#ið$;%; yÞj2; (37)

where !ILC is given in Eq. (15), and we have used the
approximation N yR ’ Uy

MNSR because j&#'j & 1 as
discussed in the previous section. The partial decay widths
for the process Ni ! ‘##W

þ ="#Z="#h are obtained by
multiplying Eq. (14) by the factor jR#ið$;%; yÞj2.

Figure 5 shows the results of the parameter scan for the
heavy neutrino production cross section with the trilepton
final states at the LHC. Each dot satisfies the experimental
constraints on all the &-matrix elements. The first (second)
column shows the results for the NH (IH) case. In the first
(second) row, the results are shown as a function of $ (y)
for the final state with two electrons, while the correspond-
ing results for the final state with two muons are shown in
the third and fourth rows. Comparing the results with those
for the simple parametrizations, the signal cross sections
for the NH case receive significant enhancements for a
certain parameter set, while for the IH case, we only have
an enhancement by a factor 2–4. The maximum signal
cross sections we can achieve in the general parametriza-
tion are listed on Table V. Interestingly, the maximum cross
section for the NH case with a final state including two
muons can even be larger than the one for the FD case.

Figure 6 shows the cross section for the process eþ e# !
"N, followed by the decays N ! ‘W andW ! q !q0, at the
ILC with

ffiffiffi
s

p ¼ 500 GeV. Here, we have fixed the heavy
neutrino mass to be 150 GeV. Each dot satisfies the experi-
mental constraints on all the &-matrix elements. The first
(second) column shows the results for the NH (IH) case.
In the first (second) row, the results are shown as a function
of $ (y) for the case of ‘ ¼ e, while the corresponding
results for the case of ‘ ¼ ( are shown in the third and
fourth rows. Similarly to the LHC results, we have found
significant enhancements for the NH case compared with
the results for the simple parametrizations, while we have
no significant enhancement for the IH case. The maximum
signal cross sections we can achieve in the general parame-
trization are listed on Table VI. The maximum cross sec-
tion for the NH case with ‘ ¼ ( can even be larger than the
one for the FD case. We have performed the same analysis
also for the ILC with

ffiffiffi
s

p ¼ 1 TeV. The maximum signal
cross sections in this case are listed in Table VII. We have
about a 30%–40% enhancement in the cross sections by
increasing the collider energy.

The maximum signal cross sections for
ffiffiffi
s

p ¼ 1 TeV and
the same luminosityL ¼ 500 fb# 1 are listed in Table VII.
We have only listed e þ jj and ( þ jj signal cross
sections as functions of $, % and y.
From Tables VI and VII the signal cross sections for

( þ jj in NH dominates over IH by an order of magnitude
for both the collider energies,

ffiffiffi
s

p ¼ 500 GeV and
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p ¼
1 TeV. The signal cross sections for e þ jj in NH are
almost the same as those in the IH case for both the collider
energies,
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p ¼ 500 GeV and
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s

p ¼ 1 TeV. The (( case
cross sections at
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s

p ¼ 500 GeV and
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s

p ¼ 1 TeV are
some factors greater than the corresponding FD cases.

VI. CONCLUSIONS

We have studied the inverse seesaw scenario and the
signature of the pseudo-Dirac heavy neutrino production at
the LHC and ILC. In the inverse seesaw scenario, the light
neutrino masses are realized by small lepton-number-
violating parameters, and hence the SM singlet neutrinos
have sizable Dirac Yukawa couplings with the SM lepton
doublets and Higgs doublet even for mass scales at the TeV
scale or smaller. As a result, the heavy neutrinos can be
produced at the LHC and ILC. Based on a concrete model
realizing the inverse seesaw in the context of the NMSSM,
we have fixed the model parameters so as to satisfy the
experimental results such as the neutrino oscillation data,
the precision measurements of the weak boson decays, and
the lepton-flavor-violating decays of charged leptons. We
have considered two typical cases for the neutrino flavor
structures of themodel, namely, the FND andFDcases.With
the fixed parameters, we have calculated the production
cross sections of the heavy neutrinos at the LHC and ILC.
First we have considered simple parametrizations with

all zero CP phases. For the LHC with
ffiffiffi
s

p ¼ 14 TeV, we
have analyzed the productions of the heavy neutrinos with a
degenerate 100 GeV mass, providing the trilepton final
states with the like-sign electrons or muons. After imposing
suitable cuts, we have found that the 5-! statistical signifi-
cance of the signal events over the SM background can be
achieved for a luminosity around 11 fb# 1 in the FD case.
On the other hand, the production cross sections in the FND
case are too small to observe the heavy neutrino signal.
We have also studied the heavy neutrino production

at the ILC with
ffiffiffi
s

p ¼ 500 GeV–1 TeV, where the final
state with a single, isolated electron and a dijet with large
missing energy is considered. For the luminosity

ffiffiffi
s

p ¼
500 fb# 1, we can obtain clear signatures of the heavy
neutrinos with mass 150 GeV for the IH mass spectrum
in the FND case and the FD case. On the other hand, the
significance for the NHmass spectrum in the FND case has
been found to be low. Since we can expect similar efficien-
cies of the signal and SM background for the final states
with different lepton flavors, muon or tau, the heavy neu-
trinos can be detected with a large statistical significance in
the modes for all FND and FD cases.

TABLE V. The maximum LHC cross sections for the final
states with two electrons and two muons, respectively, at the
LHC with

ffiffiffi
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p ¼ 14 TeV.
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Signals
Leading mode

For completeness, we have also considered the general
parametrization for the Dirac neutrino mass matrix by
introducing a general orthogonal matrix and CP phases,
for the FND case. In this case, three new parameters, the
Dirac CP phase (!), the Majorana CP phase ("), and one
angle of the orthogonal matrix, are newly involved in our
analysis. We have performed a parameter scan and identi-
fied the parameter region which satisfies all experimental
constraints on the elements of the # matrix. Then, we have
shown the signal cross sections of the heavy neutrino
production for the parameters identified. For both the
LHC and ILC, we have found significant enhancements
of the cross section for the NH case, and the resultant cross
section can be of the same order as the FD case. On the
other hand, such a remarkable enhancement has not been
observed for the IH case.

If the heavy neutrinos are discovered in the future, this
indicates that a mechanism of the neutrino mass generation
is not due to the conventional seesaw mechanism because
the expected cross section for the conventional seesaw is
extremely small. In addition, there is a crucial difference
between the inverse seesaw and the conventional seesaw
mechanism. In the inverse seesaw scenario, the lepton
number is violated by a very small Majorana mass $ ,
and the heavy neutrinos are pseudo-Dirac particles. They
behave as Dirac particles at colliders, and the lepton
number is approximately conserved in the production and
decay precesses. Thus, once a heavy neutrino is produced,
it decays to Wþ‘", conserving the lepton number. On the
other hand, in the conventional seesaw scenario, the lepton
number is violated by the large Majorana mass and, as a
result, the heavy Majorana neutrino has a lepton-number-
violating decay mode because of its Majorana nature,

N ! W"‘þ, in addition to the lepton-number-conserving
mode N ! Wþ‘". In order to confirm the inverse seesaw
mechanism, it is important to check the lepton number
conservation in the heavy neutrino signal events. For ex-
ample, for the trilepton final state (‘þ‘þ‘") at the LHC,
the main production process of the heavy neutrino is
u !d ! N‘þ through the W boson in the s channel for
both pseudo-Dirac and Majorana neutrinos. The pseudo-
Dirac neutrino only has the decay mode N ! Wþ‘", so
the heavy neutrino is reconstructed only from Wþ and ‘".
On the other hand, if the produced neutrino is the Majorana
particle, some of the signal events can be reconstructed
also from W" and ‘þ, indicating the lepton number vio-
lation. Unfortunately, we cannot distinguish the pseudo-
Dirac neutrino from the Majorana neutrino in the heavy
neutrino signal at the ILC. The heavy neutrino and anti-
heavy neutrino are produced at the same rates. Even if
a produced heavy neutrino shows the lepton-number-
violating decay, we cannot distinguish the events from
the lepton-number-conserving decay of an anti-heavy neu-
trino. Furthermore, the flavor-dependent signal events from
the heavy neutrino production provide us with valuable
information to investigate the flavor structure of the model
for the neutrino mass generation.
Finally, we comment on the current bound of the heavy

neutrino production at the LHC. The ATLAS experiment
[28] has reported their results on the search for the heavy
neutrinos based on the production through effective four-
fermion operators [29]. The vector operator of ð !d%$ uÞ %
ð !N%$ ‘Þ="2 is relevant to our case. The final states with
‘‘jj (‘ ¼ e or $ ) have been analyzed as a signal of the
heavy neutrino production, followed by the decay N !
‘W,W ! jj. From the data corresponding to an integrated
luminosity of 2:1 fb"1 at

ffiffiffi
s

p ¼ 7 TeV, the ATLAS experi-
ment has set the lower bound on the cutoff scale " as a
function of the heavy neutrino mass ' 200 GeV. For
example, it is found that " ' 2:8 TeV for M ¼ 200GeV.
We interpret this result for the upper bound on the heavy
neutrino production cross section through the four-fermion
operator as &ðq !q0 ! ‘NÞ ( 24:0 fb. In the FD case, we
find &ðq !q0 ! ‘NÞ ’ 3:77 fb, and therefore, the parameter
region we have examined in this paper is consistent with
the current LHC results.
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TABLE VII. The same as Table VI, but for
ffiffiffi
s

p ¼ 1 TeV.

NH (fb) IH (fb)

‘ ¼ e 11.0 11.0
‘ ¼ $ 180 180

TABLE VI. The maximum cross sections at the ILC withffiffiffi
s

p ¼ 500 GeV. Here, we have fixed the heavy neutrino mass
to be 150 GeV. Each dot satisfies the experimental constraints on
all the #-matrix elements. The first (second) column shows the
results for the NH (IH) case. The first and second rows corre-
spond to the results for the case of ‘ ¼ e, while the correspond-
ing results for the case of ‘ ¼ $ are shown in the third and
fourth rows.

NH (fb) IH (fb)

‘ ¼ e 8.5 8.5
‘ ¼ $ 130 11.0
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FIG. 6 (color online). The production cross sections for the process eþe" ! !N, followed by the decays N ! ‘W (‘ ¼ e, " ) and
W ! q !q0, as functions of the Dirac phase (#) and y, at the ILC with

ffiffiffi
s

p ¼ 500 GeV. Here, we have fixed the heavy neutrino mass to be
150 GeV. Each dot satisfies the experimental constraints on all the $-matrix elements. The first (second) column shows the results for
the NH (IH) case. In the first (second) row, the results are shown as a function of # (y) for the case of ‘ ¼ e, while the corresponding
results for the case of ‘ ¼ " are shown in the third and fourth rows.
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Production of the heavy neutrinos at the Linear Collider using fat jet

The total production cross section for the process eþe− →
ν1N1 from the t and s channel processes at the linear
collider at different center of mass energies are shown in
Fig. 5.
The s channelZmediated process can produce the second

(third) generation of RHNs, N2ðN3Þ in association with
ν2ðν3Þ. The cross sections for different center of mass
energies have been given in Fig. 6. The cross section in this
mode decreases with the increase in the center of mass
energy. Suchmodes can reach up to a cross section of 1 pb for
MN ¼ 100 GeV at

ffiffiffi
s

p
¼ 250 GeV. Consider the leading

decay mode of the RHN intoW and lðμ; τÞ followed by the
hadronic decay of the W could be interesting to probe the
corresponding mixing angles. The cross sections in Figs. 5
and 6 are normalized by the square of the mixing to
correspond the maximum value for a fixed MN according
to the relevant part of the charged current and neutral current
interactions in Eqs. (10) and (11), respectively.

III. COLLIDER ANALYSIS

We implement our model in FEYNRULES [95], generate
the UFO file of the model for MadGraph5-aMC@NLO

FIG. 4. RHN production processes at the linear collider. The left panel is the dominant t channel process and the right panel is s
channel process to produce the eþe− → N1ν1. To produce N2ν2 and N3ν3, the Z mediated s channel process will act.

FIG. 5. RHN production cross section at the linear collider considering eþe− → N1ν1 process at the different center of mass energies.

FIG. 6. RHN production cross section at the linear collider considering eþe− → N2ν2ðN3ν3Þ process at the different center of mass
energies from the s channel Z boson exchange.
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FIG. 5. RHN production cross section at the linear collider considering eþe− → N1ν1 process at the different center of mass energies.

FIG. 6. RHN production cross section at the linear collider considering eþe− → N2ν2ðN3ν3Þ process at the different center of mass
energies from the s channel Z boson exchange.
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FIG. 3. RHN production cross section at the LHeC considering e p ! N1j process for the e p collider

at
p
s = 318 GeV (HERA, top left panel),

p
s = 1.3 TeV (LHeC, top right panel) and

p
s = 1.8 TeV

(HE-LHeC, bottom panel).

FIG. 4. RHN production processes at the linear collider. The left panel is the dominant t channel

process and the right panel is s channel process to produce the e+e� ! N1⌫1. To produce N2⌫2 and

N3⌫3, the Z mediated s channel process will act.
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FIG. 8. e+ J + pmiss

T
and Jb + pmiss

T
final states at the linear colliders.

4. Leptons should be separated by �R`` > 0.2.

5. The leptons and photons are separated by �R`� > 0.3.

6. The jets and leptons should be separated by �R`j > 0.3.

7. Fat Jet is constructed with radius parameter R = 0.8.

A. LHeC analysis for the signal e�p ! jN1 ! e± + J + j1

Producing N1 at the LHeC and followed by its decay into leading mode to study the boosted

objects, we consider the final state e±+J+ j1. In this case we have two di↵erent processes, one

is them is the e+ + J + j1 and the other one is e� + J + j1. The first one is the Lepton Number

Violating (LNV) channel and the second one is the Lepton Number Conserving (LNC). At the

time of showing the results we combine LNV and LNC channels to obtain the final state as

e
± + J + j1.
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Right handed neutrino production at the linear collider

Higgs production from right handed neutrinos

FIG. 7. e+ J + j1 final state at the LHeC and HE-LHeC.

Achen algorithm [90, 91] implemented in Fastjet package [92, 93] with the radius parameter as

R = 0.8. 2
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j
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�
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for the linear colliders we do not use the CEPC card, rather use the cut based analysis on the PYTHIA8

results.
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Basic cuts

See also: 1008.2257, 1207.3734, 1502.05915,1503.05491, 1512.06035, 
1604.02420, 1612.02728, 1810.08970, 1811.04291, etc.
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FIG. 19. pmiss

T
distribution of the signal and background events for MN = 700 GeV and 800 GeV at

the
p
s = 1 TeV (left panel) and MN = 1.5 TeV and 2 TeV at the

p
s = 3 TeV (right panel) linear

colliders.
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FIG. 20. Transverse momentum distribution of Jb (pJb
T
) from the signal and background events for

MN = 700 GeV and 800 GeV at the
p
s = 1 TeV (left panel) and MN = 1.5 TeV and 2 TeV at the

p
s = 3 TeV (right panel) linear colliders.

1. Advanced cuts for MN = 400 GeV- 900 GeV at the
p
s = 1 TeV linear collider

• Transverse momentum for Jb, p
Jb
T

> 250 GeV.
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FIG. 21. Fat b-Jet mass (MJb) distribution from the signal and background events for MN = 700

GeV and 800 GeV at the
p
s = 1 TeV (left panel) and MN = 1.5 TeV and 2 TeV at the

p
s = 3 TeV

(right panel) linear colliders.

• Fat-b mass, MJb
> 115 GeV.

• Missing energy, pmiss

T
> 150 GeV.

We consider two benchmark points such as MN = 700 GeV and 800 GeV at the 1 TeV linear

collider to produce the boosted Higgs from RHNs. The cut flow has been shown in Tab. VII.

The b-jets are coming from the SM h as the MJb
distribution peaks at the Higgs mass for

the signal at the linear colliders. As a result MJb
> 115 GeV sets a strong cut on the SM

backgrounds.

2. Advanced cuts for the MN = 1 TeV -2.9 TeV for the
p
s = 3 TeV linear collider

• Transverse momentum for fat-b (Jb), p
Jb
T

> 350 GeV.

• Fat-b mass, MJb
> 115 GeV.

• Missing energy, pmiss

T
> 175 GeV.

We consider two benchmark points such as MN = 1.5 TeV and 2 TeV at the 3 TeV linear

collider for the boosted Higgs production from the RHN. The cut flow has been shown in

27

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 20 40 60 80 100 120 140

1 �

d
�

d
M

J
b
[G

eV
�
1
]

MJb [GeV]

700 GeV
800 GeV

Background

0

0.05

0.1

0.15

0.2

0.25

0.3

0 20 40 60 80 100 120 140

1 �

d
�

d
M

J
b
[G

eV
�
1
]

MJb [GeV]

1.5 TeV
2 TeV

Background

FIG. 21. Fat b-Jet mass (MJb) distribution from the signal and background events for MN = 700

GeV and 800 GeV at the
p
s = 1 TeV (left panel) and MN = 1.5 TeV and 2 TeV at the

p
s = 3 TeV

(right panel) linear colliders.

• Fat-b mass, MJb
> 115 GeV.

• Missing energy, pmiss

T
> 150 GeV.

We consider two benchmark points such as MN = 700 GeV and 800 GeV at the 1 TeV linear

collider to produce the boosted Higgs from RHNs. The cut flow has been shown in Tab. VII.

The b-jets are coming from the SM h as the MJb
distribution peaks at the Higgs mass for

the signal at the linear colliders. As a result MJb
> 115 GeV sets a strong cut on the SM

backgrounds.

2. Advanced cuts for the MN = 1 TeV -2.9 TeV for the
p
s = 3 TeV linear collider

• Transverse momentum for fat-b (Jb), p
Jb
T

> 350 GeV.

• Fat-b mass, MJb
> 115 GeV.

• Missing energy, pmiss

T
> 175 GeV.

We consider two benchmark points such as MN = 1.5 TeV and 2 TeV at the 3 TeV linear

collider for the boosted Higgs production from the RHN. The cut flow has been shown in
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Benchmark : 700 GeV and 800 GeV

Benchmark : 1.5 TeV and 2.0 GeV

[96] to calculate the signals and the backgrounds. Further
we use PYTHIA6 [97] for LHeC as used in [87] and PYTHIA8

[98] for the linear colliders, where subsequent decay, initial
state radiation, final state radiation and hadronization have
been carried out. We have indicated in [14,15] that if the
RHNs are sufficiently heavy, the daughter particles can be
boosted. We prefer the hadronic decay mode of the W
where the jets can be collimated so that we can call it a fat
jet (J). Such a topology is very powerful to discriminate the
signal from the SM backgrounds. We perform the detector
simulation using DELPHES version 3.4.1 [99]. The detec-
tor card for the LHeC has been used from [100]. We use the
ILD card for the linear collider. In our analysis the jets are
reconstructed by Cambridge-Achen algorithm [101,102]
implemented in Fastjet package [103,104] with the radius
parameter as R ¼ 0.8.
We study the production of the first generation RHN

(N1) and its subsequent leading decay mode (ep → N1j1,
N1 → We, W → J) at the LHeC with

ffiffiffi
s

p
¼ 1.3 TeV and

1.8 TeV center of mass energies. The corresponding
Feynman diagram is given in Fig. 7. We also study the

RHN production at the linear collider (International Linear
Collider, ILC) at

ffiffiffi
s

p
¼ 1 TeV and CLIC at

ffiffiffi
s

p
¼ 3 TeV

collider energies. However, for simplicity we will use the
term linear collider unanimously. At the linear collider we
consider two sets of signals after the production of the
RHN, such that, eþe− → N1ν, N1 → We, W → J and
eþe− → N1ν, N1 → hν, h → Jb where Jb is a fat b-jet
coming from the boosted SM Higgs decay in the dominant
mode. For the two types of colliders we consider 1000 fb−1

luminosity. The corresponding Feynman diagrams are
given in Fig. 8. For the analysis of signal and background
events we use the following set of basic cuts,
(1) Electrons in the final state should have the following

transverse momentum (pe
T) and pseudorapidity (jηej)

as pe
T > 10 GeV, jηej < 2.5.

(2) Jets are ordered in pT , jets should have pj
T >

10 GeV and jηjj < 2.5.
(3) Photons are counted if pγ

T > 10 GeV and jηγj < 2.5.
(4) Leptons should be separated by ΔRll > 0.2.
(5) The leptons and photons are separated byΔRlγ > 0.3.
(6) The jets and leptons shouldbe separatedbyΔRlj>0.3.
(7) Fat Jet is constructed with radius parameter R ¼ 0.8.

A. LHeC analysis for the signal e − p → jN1 → e# + J + j1
ProducingN1 at the LHeC and followed by its decay into

leading mode to study the boosted objects, we consider the
final state e# þJþ j1. In this case we have two different
processes, one is them is the eþ þJþ j1 and the other one
is e− þJþ j1. The first one is the lepton number violating
(LNV) channel and the second one is the lepton number
conserving (LNC). At the time of showing the results we
combine LNV and LNC channels to obtain the final state
as e# þJþ j1.FIG. 7. eþJþ j1 final state at the LHeC and HE-LHeC.

FIG. 8. eþJþ pmiss
T and Jb þ pmiss

T final states at the linear colliders.
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conserving (LNC). At the time of showing the results we
combine LNV and LNC channels to obtain the final state
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FIG. 15. Transverse momentum distribution of the electron (pe
T
) from the signal and background

events for MN = 500 GeV and 800 GeV at the
p
s = 1 TeV (left panel) and MN = 800 GeV and 2

TeV at the
p
s = 3 TeV (right panel) linear colliders.

fat-jet pJ
T
in Figs. 14-16 for the linear colliders. The fat-jet massMJ distribution has been shown

in Fig. 17. We construct the polar angle variable in Fig. 18 for the electron (fat jet), cos ✓e(cos ✓J)

where ✓e(J) = tan�1
h
p
e(J)
T

p
e(J)
z

i
, where p

e(J)
z is the z component of the three momentum of the

electron (fat jet). This is a very e↵ective cut which reduces the SM background significantly.

In view of these distributions, we have used the following advanced selection cuts to reduce the

backgrounds:

1. Advanced cuts for MN = 400 GeV-900 GeV at the
p
s = 1 TeV linear collider after the detector

simulation

• Transverse momentum for fat-jet pJ
T
> 150 GeV for MN mass range 400 GeV-600 GeV

and p
J

T
> 250 GeV for MN mass range 700 GeV-900 GeV.

• Transverse momentum for leading lepton p
e
±
T

> 100 GeV for MN mass range 400 GeV-600

GeV and p
e
±
T

> 200 GeV for MN mass range 700 GeV-900 GeV.

• Polar angle of lepton and fat-jet |cos ✓e| < 0.85, |cos ✓J | < 0.85.

• Fat-jet mass MJ > 70 GeV.
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FIG. 16. Transverse momentum distribution of the fat jet (pJ
T
) from the signal and background events

for MN = 500 GeV and 800 GeV at the
p
s = 1 TeV (left panel) and MN = 800 GeV and 2 TeV at

the
p
s = 3 TeV linear colliders.

We have tested MN = 400 GeV to 900 GeV at the
p
s = 1 TeV at the linear collider. Hence we

consider two benchmark points at the
p
s = 1 TeV linear collider such as MN = 500 GeV and

800 GeV. The cut flow for the
p
s = 1 TeV are given in the Tabs. III and IV respectively. We

have noticed that cos ✓e(J) is a very important kinematic variable and setting | cos ✓e(J)| < 0.85

puts a very strong cut for the SM backgrounds. The MJ > 70 GeV is also e↵ective to cut out

the low mass peaks (1 GeV  MJ  25 GeV ) from the low energy jets.

2. Advanced cuts for MN = 700 GeV-2.9 TeV at the
p
s = 3 TeV linear collider after the detector

simulation

• Transverse momentum for fat-jet p
J

T
> 250 GeV for the MN mass range 700 GeV-900

GeV and p
J

T
> 400 GeV for MN mass range 1� 2.9 TeV.

• Transverse momentum for leading lepton p
e
±
T

> 200 GeV for MN mass range 700 � 900

GeV and p
e
±
T

> 250 GeV for MN mass range 1� 2.9 TeV.

• Polar angle of lepton and fat-jet |cos ✓e| < 0.85, |cos ✓J | < 0.85.

• Fat-jet mass MJ > 70 GeV.
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FIG. 24. The prospective upper limits on |VeN |
2 at the 1 TeV (red band) and 3 TeV (blue band) linear

colliders at the 1 ab�1 luminosity for e+ J + pmiss

T
signal compared to EWPD [108–110], LEP2[111],

GERDA [112] 0⌫2� study from [13], ATLAS (ATLAS8-ee) [114], CMS (CMS8�ee) [115] at the 8 TeV

LHC, 13 TeV CMS search for e±e±+2j (CMS13-ee) [116] and 13 TeV CMS search for 3` (CMS13-ee)

[116] respectively.

and SM h bosons. The 0⌫2� bound became very strong up to MN = 959 GeV. At the linear

collider the polar angle variable for the lepton became very useful for us. In our analysis we

have showed that high mass RHNs can be observed at 5-� significance or more in these colliders.
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FIG. 25. Same as Fig. 24 with 3(5) ab�1 luminosity at the 1(3) TeV linear collider.

regarding the linear collider card in DELPHES.
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Fig. 2 The plot shows the luminosity required to obtain 25 signal
events of the Z ′ boson as a function of xH , for fixed values of mZ ′ = 3
TeV and BR(N → Wµ) ≃ 0.5. The solid lines correspond to
mN1 = mZ ′/4 and mN2,3 > mZ ′/2; the dashed (dotted) lines corre-
spond to mN1,2 = mZ ′/4 and mN3 > mZ ′/2 (mN1,2,3 = mZ ′/4)

σ (pp → Z ′ → NN → µ±µ±W∓W∓)
σ (pp → Z ′ → ℓ+ℓ−)

≃0.1
25
L

. (8)

For a degenerate mass spectrum for the RHNs, σ (pp →
Z ′ → NN → µ±µ±W∓W∓) = σ (pp → Z ′ →
Ni
mN

i
m)×

∑
i BR(Ni

mN
i
m → µ±µ±W∓W∓), and we obtain

L(fb−1) ≃250 ×
∑

i=1

BR(Ni
mN

i
m → µ±µ±W∓W∓)

× #(Z ′ → Ni
mN

i
m)

#(Z ′ → ℓ+ℓ−)
, (9)

where #(Z ′→Ni
m Ni

m )

#(Z ′→ℓ+ℓ−) is shown in the right panel of Fig. 1.
For the fixed values of mZ ′ = 3 TeV and BR(N →

Wµ) ≃ 0.5, we employ Eq. (9) and show the luminosity
(L) as a function of xH in Fig. 2. The solid lines corre-
spond to mN1 = mZ ′/4 and mN2,3 > mZ ′/2, while the
dashed (dotted) lines correspond to mN1,2 = mZ ′/4 and
mN3 > mZ ′/2 (mN1,2,3 = mZ ′/4 ). Hence, xH is con-
strained to be in the range of −2 ! xH ! 0. For example,
let us consider the case of xH = −1.2 for which the ratio
#(Z ′ → NN )/#(Z ′ → ℓ̄ℓ) reaches the maximum values
of 3.25, 6.50, and 9.75 for one, two, and three degener-
ate RHNs, respectively. Hence, we obtain the luminosities
L(fb−1) ≃102, 203 and 305 for one, two and three gener-
ations of degenerate RHNs, respectively. These luminosities
will be reached in the near future.

3 Alternative U(1)X model

There is another way to assign the B−L charges for the three
RHNs to achieve gauge anomaly cancellations. The B −L
charge −4 is assigned to the first two generation of RHNs
(N 1,2), while −5 for N 3 [38]. In addition to the SM particle

Table 2 New particle content of the alternative U(1)X model

SU(3)c SU(2)L U(1)Y U(1)X

N 1
R 1 1 0 −4

N 2
R 1 1 0 −4

N 3
R 1 1 0 5

HE 1 2 −1
2 (−1/2)xH + 3

$A 1 1 0 +8

$B 1 1 0 −10

2 doublet, 1 singlet

content, the new particle content of this “alternative U(1)X
model” is listed in Table 2. The U(1)X charge assignment for
the SM particles is exactly the same as in the minimal U(1)X
model. Here, we have introduced additional scalar fields, HE
and $A,B .5 The new Higgs doublet HE generates the Dirac
masses for the neutrinos, while the singlet scalars $A and $B
generate Majorana masses for N 1,2

R and N 3
R , respectively.

The Yukawa sector of the SM is extended to include

LY ⊃−
3∑

i=1

2∑

j=1

Y i j
D ℓiL HE N

j
R −1

2

2∑

k=1

Y k
N$ANkc

R Nk
R + h.c.

−1
2
Y 3
N$BN 3c

R N 3
R + h.c. (10)

We assume a suitable scalar potential for H , HE , $A, and
$B , in which these scalars develop their vacuum expectation
values as follows:

⟨H⟩ =
(

1√
2
vh

0

)

, ⟨HE ⟩ =
(

1√
2
ṽh

0

)

,

⟨$A⟩ = vA√
2
, ⟨$B⟩ = vB√

2
, (11)

where we require that v2
h + ṽ2

h = (246 GeV)2. Associated
with the U(1)X symmetry breaking, the RHNs and the U(1)X
gauge boson (Z ′) acquire their masses as

m1,2
N = Y 1,2

N√
2
vA, m3

N = Y 3
N√
2
vB,

mZ ′ = gX

√

64v2
A + 100v2

B + 1
4
x2
Hv

2
h +

(
−1

2
xH + 3

)2

ṽ2
h

≃gX
√

64v2
A + 100v2

B . (12)

After the electroweak symmetry breaking, the neutrino Dirac
masses,

mi j
D = Y i j

D√
2
ṽh , (13)

5 One may consider an extended particle content (and some additional
global symmetry) to forbid the seesaw mechanism at the tree level and
generate neutrino mass at the quantum levels [39,40].
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ṽh

0

)

,

⟨$A⟩ = vA√
2
, ⟨$B⟩ = vB√

2
, (11)

where we require that v2
h + ṽ2
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global symmetry) to forbid the seesaw mechanism at the tree level and
generate neutrino mass at the quantum levels [39,40].

123

SU(3)c SU(2)L U(1)Y U(1)X

qLi 3 2 1/6 (1/6)xH + (1/3)

uRi 3 1 2/3 (2/3)xH + (1/3)

dRi 3 1 �1/3 �(1/3)xH + (1/3)

`Li 1 2 �1/2 (�1/2)xH � 1

eRi 1 1 �1 �xH � 1

H 1 2 �1/2 (�1/2)xH

NR1,2 1 1 0 �4

NR3 1 1 0 +5

HE 1 2 �1/2 (�1/2)xH + 3

�A 1 1 0 +8

�B 1 1 0 �10

�C 1 1 0 �3

TABLE II. Minimal particle content of the “alternative” U(1)X -extended SM. In addition to the SM

particle content, three RHNs (NRi) and three new Higgs fields (HE ,�A,�B, �C) are introduced.

Here i = 1, 2, 3 stands for the family index and xH is a real parameter.

same charge for two RHNs among three RHNs in total, this alternative charge assignment

is a unique choice in order to cancel all the anomalies [86].

For generating neutrino masses, we have introduced additional scalar fields: one SU(2)

doublet HE and two SM-singlets �A,B,C . The new Higgs doublet (HE) generates the neu-

trino Dirac masses, while the SM-singlet scalars generate the Majorana mass terms for

{NR,1, NR,2} and NR,3, respectively. The Yukawa Lagrangian of the SM is extended to

include

�LY �

3X

i=1

2X

j=1

Y ij

D
`LiHENRj +

1

2

2X

k=1

Y A,k

N
NC

Rk
�ANRk

+
1

2
Y B

N
NC

R3
�BNR3 +H.c. , (6)

where we have assumed a basis in which Y A

N
is diagonal, without loss of generality. We also

assume a suitable potential for the Higgs fields H, HE, �A, �B and �C to develop their

7
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background arising from W+jets and multijet events in which one or more jets satisfy the
electron selection criteria is not included in the study.

The SSM signal Z0 ! ee was generated at leading-order (LO) in QCD using PYTHIA 8.186 [59]
with the NNPDF23LO PDF set [70] and the ATLAS A14 set of tuned parameters [71] for
event generation, parton showering and hadronization. The Z0

SSM boson is assumed not
to couple to the SM W and Z bosons and interference between the Z0 boson and the SM Z
boson production amplitudes is neglected. Higher-order QCD corrections were computed
with the same methodology and applied as for the DY background.

The event selection is similar to the one developed for Run 2 [66]. The events have to be
accepted by the single electron trigger which requires at least one electron with transverse
momentum pT > 22 GeV in |h| < 2.5. Events are required to contain exactly two electrons
fulfilling the medium identification working point and have pT > 25 GeV in |h| < 2.47
excluding 1.37 < |h| < 1.52. The electrons are reconstructed and identified as detailed in
Section 4.2.
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Figure 4.20: (a) Invariant mass distribution for events satisfying all selection criteria in the dielectron
channel. The expected background is shown together with a SSM Z0 boson with a mass of 5 TeV.
(b) Observed (solid black line) and expected (dashed black line) upper limits on cross section times
branching ratio (s ⇥ BR) as a function of the SSM Z0 boson mass in the dielectron channel. The
1s (green) and 2s (yellow) expected limit bands are also shown. The predicted s ⇥ BR for SSM Z0

production is shown as a black line. The vertical dashed line indicates the observed mass limit of the
ATLAS Run 2 results using 36.1 fb�1 of

p
s = 13 TeV data [66].

The resulting dielectron invariant mass spectrum (mee) is shown in Figure 4.20(a) for the DY
background as well as for an example Z0 boson with a mass of 5 TeV.

The statistical analysis is performed for the search for a Z0

SSM boson using the mee distribution.
The same methodology is used as in the Run 2 analysis which uses a Bayesian analysis [72].
Upper limits on the cross section for producing a Z0

SSM boson times its branching ratio
(s ⇥ BR) are computed at the 95% CL as a function of the Z0

SSM boson mass. The 95% CL
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Fig. 3 For the alternative U(1)X model, the left panel shows the
branching ratios of Z ′ as a function of xH with a fixed mZ ′ = 3 TeV.
The solid lines correspond to mN1 = mZ ′/4 and mN2 > mZ ′/2, and
the dashed lines correspond to mN1,2 = mZ ′/4. From top to bottom, the
solid (red, black and blue) lines at xH = − 1 are the branching ratios to
the first generations of jets (up and down quarks), RHNs, and charged

leptons, respectively. The lines for the RHN final states correspond to
the sum of the branching ratio to all possible RHNs. In the right panel,
we show the ratio of the partial decay widths of Z ′ boson into RHNs
and dilepton final states. The line codings are the same as in the left
panel

are generated, and hence the seesaw mechanism is automat-
ically implemented.

Let us now consider the branching ratios for Z ′ decay.
Note that in the alternative U(1)X model, the charge assign-
ment ensures the stability of N 3

R and it is naturally a dark
matter (DM) candidate [41]. We may consider the scenario
where the DM particle N 3 mainly communicates with the
SM sector via Z ′ boson exchange (Z ′ portal DM). In this
case, we expect that the relic abundance constraint leads to
m3

N ≃ mZ ′/2. In the following, we consider this case and
the partial decay width of the Z ′ into N 3 is neglected. The Z ′

boson decay width formulas are given by Eqs. (5) and (6). In
the alternative U(1)X model, QNR = − 4 for N 1,2

R in Eq. (6).
For the alternative U(1)X model with a fixedmZ ′ = 3 TeV,

we show the Z ′ branching ratios In the left panel of Fig. 3. The
solid lines correspond to mN1 = mZ ′/4 and mN2, > mZ ′/2.
The dashed lines correspond to mN1,2 = mZ ′/4. For the SM
final states, we show branching ratios to only the first gen-
eration dilepton and jets (sum of the jets from up and down
quarks). The lines for the RHN final states correspond to the
sum of the branching ratio to all possible RHNs. The plot
shows the enhancement of RHNs branching ratios around
xH = − 0.8, with the maximum values of the branching
ratios, 0.612 and 0.760, for the cases with one and two
generations of RHNs, respectively. Note that even for the
B − L limit (xH = 0), the branching ratios are remarkably
enhanced, 0.444 and 0.615, compared to those obtained for
the conventional charge assignment, 0.05 and 0.09, respec-
tively.

In the right panel, we show the ratio of the partial decay
widths into a pair of NN and dilepton final states (see Eq. (7)).
For U(1)X model with alternative charge assignment, we find
the peaks in the ratio at xH = − 1.2, with the maximum

Fig. 4 The plot shows the luminosity required to obtain 25 signal
events of the Z ′ boson as a function of xH , for fixed values of the
mZ ′ = 3 TeV and BR(N → Wµ) ≃ 0.5. The solid line corresponds to
mN1 = mZ ′/4 and mN2 > mZ ′/2, while the dashed line corresponds to
mN1,2 = mZ ′/4. The vertical solid line marks the B − L limit (xH = 0).
The solid horizontal line corresponds to a luminosity value of 300 fb− 1

required for the discovery of RHNs at the future LHC with a dimuon
and a diboson final states

values of 52.0 and 104, respectively. Note that even for the
B − L limit (xH = 0), we have significant enhancements
for the ratios of the partial decay widths with the maximum
values of 5.20 and 10.4, respectively, compared to 0.5 for
the conventional charge assignment. The maximum values
of the enhancement factor for xH = − 1.2 are sufficiently
large for the RHN discovery with a same-sign dimuon and a
boosted diboson final state (see Eq. (2)).

Let us now consider the luminosity required for 25 signal
events of the Z ′ boson production. For fixed values of the
mZ ′ = 3 TeV and BR(N → Wµ) ≃ 0.5, we employ Eq. (9)
and show the luminosity (L) as a function of xH in Fig. 4. The
solid line corresponds to mN1 = mZ ′/4 and mN2 > mZ ′/2,
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are generated, and hence the seesaw mechanism is automat-
ically implemented.

Let us now consider the branching ratios for Z ′ decay.
Note that in the alternative U(1)X model, the charge assign-
ment ensures the stability of N 3

R and it is naturally a dark
matter (DM) candidate [41]. We may consider the scenario
where the DM particle N 3 mainly communicates with the
SM sector via Z ′ boson exchange (Z ′ portal DM). In this
case, we expect that the relic abundance constraint leads to
m3

N ≃ mZ ′/2. In the following, we consider this case and
the partial decay width of the Z ′ into N 3 is neglected. The Z ′

boson decay width formulas are given by Eqs. (5) and (6). In
the alternative U(1)X model, QNR = − 4 for N 1,2

R in Eq. (6).
For the alternative U(1)X model with a fixedmZ ′ = 3 TeV,

we show the Z ′ branching ratios In the left panel of Fig. 3. The
solid lines correspond to mN1 = mZ ′/4 and mN2, > mZ ′/2.
The dashed lines correspond to mN1,2 = mZ ′/4. For the SM
final states, we show branching ratios to only the first gen-
eration dilepton and jets (sum of the jets from up and down
quarks). The lines for the RHN final states correspond to the
sum of the branching ratio to all possible RHNs. The plot
shows the enhancement of RHNs branching ratios around
xH = − 0.8, with the maximum values of the branching
ratios, 0.612 and 0.760, for the cases with one and two
generations of RHNs, respectively. Note that even for the
B − L limit (xH = 0), the branching ratios are remarkably
enhanced, 0.444 and 0.615, compared to those obtained for
the conventional charge assignment, 0.05 and 0.09, respec-
tively.

In the right panel, we show the ratio of the partial decay
widths into a pair of NN and dilepton final states (see Eq. (7)).
For U(1)X model with alternative charge assignment, we find
the peaks in the ratio at xH = − 1.2, with the maximum

Fig. 4 The plot shows the luminosity required to obtain 25 signal
events of the Z ′ boson as a function of xH , for fixed values of the
mZ ′ = 3 TeV and BR(N → Wµ) ≃ 0.5. The solid line corresponds to
mN1 = mZ ′/4 and mN2 > mZ ′/2, while the dashed line corresponds to
mN1,2 = mZ ′/4. The vertical solid line marks the B − L limit (xH = 0).
The solid horizontal line corresponds to a luminosity value of 300 fb− 1

required for the discovery of RHNs at the future LHC with a dimuon
and a diboson final states

values of 52.0 and 104, respectively. Note that even for the
B − L limit (xH = 0), we have significant enhancements
for the ratios of the partial decay widths with the maximum
values of 5.20 and 10.4, respectively, compared to 0.5 for
the conventional charge assignment. The maximum values
of the enhancement factor for xH = − 1.2 are sufficiently
large for the RHN discovery with a same-sign dimuon and a
boosted diboson final state (see Eq. (2)).

Let us now consider the luminosity required for 25 signal
events of the Z ′ boson production. For fixed values of the
mZ ′ = 3 TeV and BR(N → Wµ) ≃ 0.5, we employ Eq. (9)
and show the luminosity (L) as a function of xH in Fig. 4. The
solid line corresponds to mN1 = mZ ′/4 and mN2 > mZ ′/2,
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are generated, and hence the seesaw mechanism is automat-
ically implemented.

Let us now consider the branching ratios for Z ′ decay.
Note that in the alternative U(1)X model, the charge assign-
ment ensures the stability of N 3

R and it is naturally a dark
matter (DM) candidate [41]. We may consider the scenario
where the DM particle N 3 mainly communicates with the
SM sector via Z ′ boson exchange (Z ′ portal DM). In this
case, we expect that the relic abundance constraint leads to
m3

N ≃ mZ ′/2. In the following, we consider this case and
the partial decay width of the Z ′ into N 3 is neglected. The Z ′

boson decay width formulas are given by Eqs. (5) and (6). In
the alternative U(1)X model, QNR = − 4 for N 1,2

R in Eq. (6).
For the alternative U(1)X model with a fixedmZ ′ = 3 TeV,

we show the Z ′ branching ratios In the left panel of Fig. 3. The
solid lines correspond to mN1 = mZ ′/4 and mN2, > mZ ′/2.
The dashed lines correspond to mN1,2 = mZ ′/4. For the SM
final states, we show branching ratios to only the first gen-
eration dilepton and jets (sum of the jets from up and down
quarks). The lines for the RHN final states correspond to the
sum of the branching ratio to all possible RHNs. The plot
shows the enhancement of RHNs branching ratios around
xH = − 0.8, with the maximum values of the branching
ratios, 0.612 and 0.760, for the cases with one and two
generations of RHNs, respectively. Note that even for the
B − L limit (xH = 0), the branching ratios are remarkably
enhanced, 0.444 and 0.615, compared to those obtained for
the conventional charge assignment, 0.05 and 0.09, respec-
tively.

In the right panel, we show the ratio of the partial decay
widths into a pair of NN and dilepton final states (see Eq. (7)).
For U(1)X model with alternative charge assignment, we find
the peaks in the ratio at xH = − 1.2, with the maximum

Fig. 4 The plot shows the luminosity required to obtain 25 signal
events of the Z ′ boson as a function of xH , for fixed values of the
mZ ′ = 3 TeV and BR(N → Wµ) ≃ 0.5. The solid line corresponds to
mN1 = mZ ′/4 and mN2 > mZ ′/2, while the dashed line corresponds to
mN1,2 = mZ ′/4. The vertical solid line marks the B − L limit (xH = 0).
The solid horizontal line corresponds to a luminosity value of 300 fb− 1

required for the discovery of RHNs at the future LHC with a dimuon
and a diboson final states

values of 52.0 and 104, respectively. Note that even for the
B − L limit (xH = 0), we have significant enhancements
for the ratios of the partial decay widths with the maximum
values of 5.20 and 10.4, respectively, compared to 0.5 for
the conventional charge assignment. The maximum values
of the enhancement factor for xH = − 1.2 are sufficiently
large for the RHN discovery with a same-sign dimuon and a
boosted diboson final state (see Eq. (2)).

Let us now consider the luminosity required for 25 signal
events of the Z ′ boson production. For fixed values of the
mZ ′ = 3 TeV and BR(N → Wµ) ≃ 0.5, we employ Eq. (9)
and show the luminosity (L) as a function of xH in Fig. 4. The
solid line corresponds to mN1 = mZ ′/4 and mN2 > mZ ′/2,
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are generated, and hence the seesaw mechanism is automat-
ically implemented.

Let us now consider the branching ratios for Z ′ decay.
Note that in the alternative U(1)X model, the charge assign-
ment ensures the stability of N 3

R and it is naturally a dark
matter (DM) candidate [41]. We may consider the scenario
where the DM particle N 3 mainly communicates with the
SM sector via Z ′ boson exchange (Z ′ portal DM). In this
case, we expect that the relic abundance constraint leads to
m3

N ≃ mZ ′/2. In the following, we consider this case and
the partial decay width of the Z ′ into N 3 is neglected. The Z ′

boson decay width formulas are given by Eqs. (5) and (6). In
the alternative U(1)X model, QNR = − 4 for N 1,2

R in Eq. (6).
For the alternative U(1)X model with a fixedmZ ′ = 3 TeV,

we show the Z ′ branching ratios In the left panel of Fig. 3. The
solid lines correspond to mN1 = mZ ′/4 and mN2, > mZ ′/2.
The dashed lines correspond to mN1,2 = mZ ′/4. For the SM
final states, we show branching ratios to only the first gen-
eration dilepton and jets (sum of the jets from up and down
quarks). The lines for the RHN final states correspond to the
sum of the branching ratio to all possible RHNs. The plot
shows the enhancement of RHNs branching ratios around
xH = − 0.8, with the maximum values of the branching
ratios, 0.612 and 0.760, for the cases with one and two
generations of RHNs, respectively. Note that even for the
B − L limit (xH = 0), the branching ratios are remarkably
enhanced, 0.444 and 0.615, compared to those obtained for
the conventional charge assignment, 0.05 and 0.09, respec-
tively.

In the right panel, we show the ratio of the partial decay
widths into a pair of NN and dilepton final states (see Eq. (7)).
For U(1)X model with alternative charge assignment, we find
the peaks in the ratio at xH = − 1.2, with the maximum

Fig. 4 The plot shows the luminosity required to obtain 25 signal
events of the Z ′ boson as a function of xH , for fixed values of the
mZ ′ = 3 TeV and BR(N → Wµ) ≃ 0.5. The solid line corresponds to
mN1 = mZ ′/4 and mN2 > mZ ′/2, while the dashed line corresponds to
mN1,2 = mZ ′/4. The vertical solid line marks the B − L limit (xH = 0).
The solid horizontal line corresponds to a luminosity value of 300 fb− 1

required for the discovery of RHNs at the future LHC with a dimuon
and a diboson final states

values of 52.0 and 104, respectively. Note that even for the
B − L limit (xH = 0), we have significant enhancements
for the ratios of the partial decay widths with the maximum
values of 5.20 and 10.4, respectively, compared to 0.5 for
the conventional charge assignment. The maximum values
of the enhancement factor for xH = − 1.2 are sufficiently
large for the RHN discovery with a same-sign dimuon and a
boosted diboson final state (see Eq. (2)).

Let us now consider the luminosity required for 25 signal
events of the Z ′ boson production. For fixed values of the
mZ ′ = 3 TeV and BR(N → Wµ) ≃ 0.5, we employ Eq. (9)
and show the luminosity (L) as a function of xH in Fig. 4. The
solid line corresponds to mN1 = mZ ′/4 and mN2 > mZ ′/2,
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are generated, and hence the seesaw mechanism is automat-
ically implemented.

Let us now consider the branching ratios for Z ′ decay.
Note that in the alternative U(1)X model, the charge assign-
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R and it is naturally a dark
matter (DM) candidate [41]. We may consider the scenario
where the DM particle N 3 mainly communicates with the
SM sector via Z ′ boson exchange (Z ′ portal DM). In this
case, we expect that the relic abundance constraint leads to
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N ≃ mZ ′/2. In the following, we consider this case and
the partial decay width of the Z ′ into N 3 is neglected. The Z ′

boson decay width formulas are given by Eqs. (5) and (6). In
the alternative U(1)X model, QNR = − 4 for N 1,2

R in Eq. (6).
For the alternative U(1)X model with a fixedmZ ′ = 3 TeV,

we show the Z ′ branching ratios In the left panel of Fig. 3. The
solid lines correspond to mN1 = mZ ′/4 and mN2, > mZ ′/2.
The dashed lines correspond to mN1,2 = mZ ′/4. For the SM
final states, we show branching ratios to only the first gen-
eration dilepton and jets (sum of the jets from up and down
quarks). The lines for the RHN final states correspond to the
sum of the branching ratio to all possible RHNs. The plot
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xH = − 0.8, with the maximum values of the branching
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widths into a pair of NN and dilepton final states (see Eq. (7)).
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Fig. 4 The plot shows the luminosity required to obtain 25 signal
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values of 52.0 and 104, respectively. Note that even for the
B − L limit (xH = 0), we have significant enhancements
for the ratios of the partial decay widths with the maximum
values of 5.20 and 10.4, respectively, compared to 0.5 for
the conventional charge assignment. The maximum values
of the enhancement factor for xH = − 1.2 are sufficiently
large for the RHN discovery with a same-sign dimuon and a
boosted diboson final state (see Eq. (2)).

Let us now consider the luminosity required for 25 signal
events of the Z ′ boson production. For fixed values of the
mZ ′ = 3 TeV and BR(N → Wµ) ≃ 0.5, we employ Eq. (9)
and show the luminosity (L) as a function of xH in Fig. 4. The
solid line corresponds to mN1 = mZ ′/4 and mN2 > mZ ′/2,
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for the ratios of the partial decay widths with the maximum
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the conventional charge assignment. The maximum values
of the enhancement factor for xH = − 1.2 are sufficiently
large for the RHN discovery with a same-sign dimuon and a
boosted diboson final state (see Eq. (2)).

Let us now consider the luminosity required for 25 signal
events of the Z ′ boson production. For fixed values of the
mZ ′ = 3 TeV and BR(N → Wµ) ≃ 0.5, we employ Eq. (9)
and show the luminosity (L) as a function of xH in Fig. 4. The
solid line corresponds to mN1 = mZ ′/4 and mN2 > mZ ′/2,
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Fig. 3 For the alternative U(1)X model, the left panel shows the
branching ratios of Z ′ as a function of xH with a fixed mZ ′ = 3 TeV.
The solid lines correspond to mN1 = mZ ′/4 and mN2 > mZ ′/2, and
the dashed lines correspond to mN1,2 = mZ ′/4. From top to bottom, the
solid (red, black and blue) lines at xH = − 1 are the branching ratios to
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leptons, respectively. The lines for the RHN final states correspond to
the sum of the branching ratio to all possible RHNs. In the right panel,
we show the ratio of the partial decay widths of Z ′ boson into RHNs
and dilepton final states. The line codings are the same as in the left
panel

are generated, and hence the seesaw mechanism is automat-
ically implemented.

Let us now consider the branching ratios for Z ′ decay.
Note that in the alternative U(1)X model, the charge assign-
ment ensures the stability of N 3

R and it is naturally a dark
matter (DM) candidate [41]. We may consider the scenario
where the DM particle N 3 mainly communicates with the
SM sector via Z ′ boson exchange (Z ′ portal DM). In this
case, we expect that the relic abundance constraint leads to
m3

N ≃ mZ ′/2. In the following, we consider this case and
the partial decay width of the Z ′ into N 3 is neglected. The Z ′

boson decay width formulas are given by Eqs. (5) and (6). In
the alternative U(1)X model, QNR = − 4 for N 1,2

R in Eq. (6).
For the alternative U(1)X model with a fixedmZ ′ = 3 TeV,

we show the Z ′ branching ratios In the left panel of Fig. 3. The
solid lines correspond to mN1 = mZ ′/4 and mN2, > mZ ′/2.
The dashed lines correspond to mN1,2 = mZ ′/4. For the SM
final states, we show branching ratios to only the first gen-
eration dilepton and jets (sum of the jets from up and down
quarks). The lines for the RHN final states correspond to the
sum of the branching ratio to all possible RHNs. The plot
shows the enhancement of RHNs branching ratios around
xH = − 0.8, with the maximum values of the branching
ratios, 0.612 and 0.760, for the cases with one and two
generations of RHNs, respectively. Note that even for the
B − L limit (xH = 0), the branching ratios are remarkably
enhanced, 0.444 and 0.615, compared to those obtained for
the conventional charge assignment, 0.05 and 0.09, respec-
tively.

In the right panel, we show the ratio of the partial decay
widths into a pair of NN and dilepton final states (see Eq. (7)).
For U(1)X model with alternative charge assignment, we find
the peaks in the ratio at xH = − 1.2, with the maximum

Fig. 4 The plot shows the luminosity required to obtain 25 signal
events of the Z ′ boson as a function of xH , for fixed values of the
mZ ′ = 3 TeV and BR(N → Wµ) ≃ 0.5. The solid line corresponds to
mN1 = mZ ′/4 and mN2 > mZ ′/2, while the dashed line corresponds to
mN1,2 = mZ ′/4. The vertical solid line marks the B − L limit (xH = 0).
The solid horizontal line corresponds to a luminosity value of 300 fb− 1

required for the discovery of RHNs at the future LHC with a dimuon
and a diboson final states

values of 52.0 and 104, respectively. Note that even for the
B − L limit (xH = 0), we have significant enhancements
for the ratios of the partial decay widths with the maximum
values of 5.20 and 10.4, respectively, compared to 0.5 for
the conventional charge assignment. The maximum values
of the enhancement factor for xH = − 1.2 are sufficiently
large for the RHN discovery with a same-sign dimuon and a
boosted diboson final state (see Eq. (2)).

Let us now consider the luminosity required for 25 signal
events of the Z ′ boson production. For fixed values of the
mZ ′ = 3 TeV and BR(N → Wµ) ≃ 0.5, we employ Eq. (9)
and show the luminosity (L) as a function of xH in Fig. 4. The
solid line corresponds to mN1 = mZ ′/4 and mN2 > mZ ′/2,

123

696 Page 6 of 11 Eur. Phys. J. C (2018) 78 :696

6 4 2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

xH
Br
an
ch
in
g

Ra
tio

3 2 1 0 1
0

20

40

60

80

100

xH

Z'
N
N

Z'
ll

Fig. 3 For the alternative U(1)X model, the left panel shows the
branching ratios of Z ′ as a function of xH with a fixed mZ ′ = 3 TeV.
The solid lines correspond to mN1 = mZ ′/4 and mN2 > mZ ′/2, and
the dashed lines correspond to mN1,2 = mZ ′/4. From top to bottom, the
solid (red, black and blue) lines at xH = − 1 are the branching ratios to
the first generations of jets (up and down quarks), RHNs, and charged

leptons, respectively. The lines for the RHN final states correspond to
the sum of the branching ratio to all possible RHNs. In the right panel,
we show the ratio of the partial decay widths of Z ′ boson into RHNs
and dilepton final states. The line codings are the same as in the left
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ment ensures the stability of N 3
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The dashed lines correspond to mN1,2 = mZ ′/4. For the SM
final states, we show branching ratios to only the first gen-
eration dilepton and jets (sum of the jets from up and down
quarks). The lines for the RHN final states correspond to the
sum of the branching ratio to all possible RHNs. The plot
shows the enhancement of RHNs branching ratios around
xH = − 0.8, with the maximum values of the branching
ratios, 0.612 and 0.760, for the cases with one and two
generations of RHNs, respectively. Note that even for the
B − L limit (xH = 0), the branching ratios are remarkably
enhanced, 0.444 and 0.615, compared to those obtained for
the conventional charge assignment, 0.05 and 0.09, respec-
tively.

In the right panel, we show the ratio of the partial decay
widths into a pair of NN and dilepton final states (see Eq. (7)).
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values of 52.0 and 104, respectively. Note that even for the
B − L limit (xH = 0), we have significant enhancements
for the ratios of the partial decay widths with the maximum
values of 5.20 and 10.4, respectively, compared to 0.5 for
the conventional charge assignment. The maximum values
of the enhancement factor for xH = − 1.2 are sufficiently
large for the RHN discovery with a same-sign dimuon and a
boosted diboson final state (see Eq. (2)).

Let us now consider the luminosity required for 25 signal
events of the Z ′ boson production. For fixed values of the
mZ ′ = 3 TeV and BR(N → Wµ) ≃ 0.5, we employ Eq. (9)
and show the luminosity (L) as a function of xH in Fig. 4. The
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we show the ratio of the partial decay widths of Z ′ boson into RHNs
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where the DM particle N 3 mainly communicates with the
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solid lines correspond to mN1 = mZ ′/4 and mN2, > mZ ′/2.
The dashed lines correspond to mN1,2 = mZ ′/4. For the SM
final states, we show branching ratios to only the first gen-
eration dilepton and jets (sum of the jets from up and down
quarks). The lines for the RHN final states correspond to the
sum of the branching ratio to all possible RHNs. The plot
shows the enhancement of RHNs branching ratios around
xH = − 0.8, with the maximum values of the branching
ratios, 0.612 and 0.760, for the cases with one and two
generations of RHNs, respectively. Note that even for the
B − L limit (xH = 0), the branching ratios are remarkably
enhanced, 0.444 and 0.615, compared to those obtained for
the conventional charge assignment, 0.05 and 0.09, respec-
tively.
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widths into a pair of NN and dilepton final states (see Eq. (7)).
For U(1)X model with alternative charge assignment, we find
the peaks in the ratio at xH = − 1.2, with the maximum

Fig. 4 The plot shows the luminosity required to obtain 25 signal
events of the Z ′ boson as a function of xH , for fixed values of the
mZ ′ = 3 TeV and BR(N → Wµ) ≃ 0.5. The solid line corresponds to
mN1 = mZ ′/4 and mN2 > mZ ′/2, while the dashed line corresponds to
mN1,2 = mZ ′/4. The vertical solid line marks the B − L limit (xH = 0).
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required for the discovery of RHNs at the future LHC with a dimuon
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values of 52.0 and 104, respectively. Note that even for the
B − L limit (xH = 0), we have significant enhancements
for the ratios of the partial decay widths with the maximum
values of 5.20 and 10.4, respectively, compared to 0.5 for
the conventional charge assignment. The maximum values
of the enhancement factor for xH = − 1.2 are sufficiently
large for the RHN discovery with a same-sign dimuon and a
boosted diboson final state (see Eq. (2)).

Let us now consider the luminosity required for 25 signal
events of the Z ′ boson production. For fixed values of the
mZ ′ = 3 TeV and BR(N → Wµ) ≃ 0.5, we employ Eq. (9)
and show the luminosity (L) as a function of xH in Fig. 4. The
solid line corresponds to mN1 = mZ ′/4 and mN2 > mZ ′/2,
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Fig. 1 For the minimal U(1)X model, the left panel shows the branch-
ing ratios of Z ′ as a function of xH with a fixed mZ ′ = 3 TeV. The
solid lines correspond to mN1 = mZ ′/4 and mN2,3 > mZ ′/2; the
dashed (dotted) lines correspond to mN1,2 = mZ ′/4 and mN3 > mZ ′/2
(mN1,2,3 = mZ ′/4 ). From top to bottom, the solid (red, black and blue)
lines at xH = − 1 are the branching ratios to the first generations of jets

(up and down quarks), RHNs, and charged leptons, respectively. The
lines for the RHN final states correspond to the sum of the branching
ratio to all possible RHNs. In the right panel, we show the ratio of the
partial decay widths of Z ′ boson into RHNs and dilepton final states.
The line codings are the same as in the left panel

usedm2
fL

≪ m2
Z ′ in the final expression. Similarly, the partial

Z ′ boson decay width into a pair of single generation of
Majorana RHNs is given by

!(Z ′ → NN ) = g 2
X

24π
Q2

NR
mZ ′

(

1 − 4m2
N

m2
Z ′

)3/2

, (6)

where, mN and QNR are the mass and the U(1)X charge of
the RHN, respectively.

In the left panel of Fig. 1, we show the Z ′ branching ratios
for the minimal U(1)X model with a fixed mZ ′ = 3 TeV. The
solid lines correspond to mN1 = mZ ′/4 and mN2,3 > mZ ′/2;
the dashed (dotted) line corresponds to mN1,2 = mZ ′/4 and
mN3 > mZ ′/2 (mN1,2,3 = mZ ′/4). For the SM final states, we
show branching ratios to only the first generation dilepton and
jets (sum of the jets from up and down quarks). The lines for
the RHN final states correspond to the sum of the branching
ratio to all possible RHNs. The plot shows the enhancement
of the branching ratios into RHNs around xH = − 0.8, with
the maximum values of the branching ratios, 0.09, 0.16, and
0.23, for the cases with one, two, and three generations of
RHNs, respectively. For the minimal B − L model (xH = 0),
the branching ratios are only 0.05, 0.09, and 0.13, respec-
tively.

As discussed in Sect. 1, the discovery of RHNs at the col-
lider via the Z ′ decay requires some enhancement of the RHN
production cross section, because the LHC Run-2 results
already set the very severe upper bound on the Z ′ production
cross section with the dilepton final states. To see how much
enhancement can be achieved in the minimal U(1)X model,
let us now consider a ratio of the partial decay widths into
a pair of NN and dilepton final states, which is nothing but
the ratio of the NN and dilepton production cross section.
Using Eqs. (5) and (6), this ratio is given by

!(Z ′ → NN )

!(Z ′ → ℓ̄ℓ)
=

4Q2
NR

8 + 12xH + 5x2
H

(

1 − 4m2
N

m2
Z ′

)3/2

, (7)

for only one generation of RHNs and charged leptons in the
final states.

In the right panel of Fig. 1, we show the ratio as a function
of xH . We find the peaks at xH = − 1.2 with the maximum
values of 3.25, 6.50, and 9.75, respectively.4 Although we
have obtained remarkable enhancement factors, these are not
large enough, compared to the values required in the worst
case scenario (see Eq. (2)). Since the enhancement required
for the trilepton final states is extremely large, we focus on
the same sign dilepton and diboson final states in the rest of
this section.

Let us now consider an optimistic case and assume that
the Z ′ boson has been discovered at the LHC. In this case, we
remove the constraint σ (pp → Z ′ → ℓ+ℓ− ) ! 2.4 × 10− 2

fb. According to [17], the cross section required for the 5σ

discovery of the RHNs at the LHC with a 300 fb− 1 luminos-
ity is σ (pp → Z ′ → NN → µ±µ±W∓W∓) ≃ 0.1 fb.
Although it is difficult for us to evaluate systematic errors,
we here very naively require ad-hoc benchmark number of
signal events to be 25 for the discovery of the Z ′ boson pro-
duction, since the number of SM background events for a
high Z ′ boson mass region (mZ ′ " 3 TeV) is very small.
Hence, we estimate the luminosity (L) for 25 signal events
of the Z ′ boson production as follows:

4 In the left panel of Fig. 1, we can see that the branching ratio to the
dijet final states is also significantly enhanced. As we have commented
in Ref. [23], the LHC constraint on the Z ′ boson production cross section
with the dilepton final states is still stronger than that with the dijet final
states even with such an enhancement.
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Fig. 1. The lower bounds on mZ ′ /gBL as a function of mZ ′ from the ATLAS 2017 
result and the HL-LHC search reach [19], along with the LEP constraint of mZ ′ /gBL >

6.9 TeV (dotted horizontal line) [11].

where we have neglected all SM fermion masses, and Q N j is the 
U(1)B−L charge of the RHN N j

R . For the minimal (alternative) B − L
model, let us consider two benchmark (degenerate) mass spec-
tra for the RHNs: mN1,2,3(mN1,2 ) = mN = 50 GeV and 100 GeV. It 
has been recently shown in Ref. [13] that in the alternative B − L
model, N3

R plays the role of DM in the Universe, reproducing the 
observed DM relic abundance with mN3 ≃ mZ ′/2. Motivated by the 
discussion, we set mN3 ≃ mZ ′/2, so that the N3 contribution to !Z ′

is neglected.
In our LHC analysis, we employ CTEQ6L [16] for the parton dis-

tribution functions and calculate the cross section of the dilepton 
production through the Z ′ boson exchange in the s-channel. Ne-
glecting the mass for the RHNs in our LHC analysis, the resultant 
cross section is controlled by only two parameters: gBL and mZ ′ . 
To derive a constraint for these parameters from the ATLAS 2017 
results [14], we follow the strategy in Refs. [17,18]: we first calcu-
late the cross section of the process, pp → Z ′ + X → ℓ+ℓ− + X , for 
the sequential SM Z ′ boson and find a k-factor (k = 1.31) by which 
our cross section coincides with the cross section for the sequen-
tial SM Z ′ boson presented in the ATLAS paper [14]. We employ 
this k-factor for all of our LHC analysis, and find an upper bound 
on gBL as a function of mZ ′ from the ATLAS 2017 results. For the 
prospect of the future constraints to be obtained after the HL-LHC 
experiment with the 3000/fb integrated luminosity, we refer the 
simulation result presented in the ATLAS Technical Design Report 
[19]. Figure 4.20 (b) in this report shows the prospective upper 
bound on the cross section, pp → Z ′ + X → e+e− + X , as low as 
10−5 fb over the range of 2.5 ≤ mZ ′ [TeV] ≤ 7.5, which results in a 
lower bound on mZ ′ > 6.4 TeV for the sequential SM Z ′ boson.

For the following ILC analysis, instead of the LHC upper bound 
on gBL as a function of mZ ′ , it is more useful to plot the LHC lower 
bound on mZ ′/gBL , which is shown in Fig. 1. The lower and upper 
solid lines correspond to the lower bound from the ATLAS 2017 
and the prospective HL-LHC bound, respectively, for the minimal 
B − L model. The corresponding lower bounds for the alternative 
B − L model are depicted as the dashed lines. In the alternative 
B − L model, the Z ′ boson decay to a pair of RHNs dominates 
the total decay width and hence the branching ratio into dileptons 
is relatively suppressed, resulting in the LHC constraints weaker 
than those for the minimal B − L model. Note that the LHC con-
straint for mZ ′/gBL becomes dramatically weaker as mZ ′ increases. 
Since the ILC energy is much smaller than mZ ′ , the Z ′ boson medi-
ated processes at the ILC are described by effective higher dimen-
sional operators which are proportional to (mZ ′/gBL)

2. Therefore, 
the plots in Fig. 1 imply that the ILC can be a more powerful ma-

Fig. 2. The RHN pair production cross sections at the 250 GeV ILC, along the 
prospective HL-LHC bounds shown in Fig. 1. The upper (black) and lower (red) 
solid lines are the results for the minimal B − L model with mN1,2,3 = 50 GeV and 
100 GeV, respectively. The results for the alternative B − L model are shown as the 
upper (black) and lower (red) dashed lines corresponding to mN1,2 = 50 GeV and 
100 GeV, respectively.

chine than the LHC to explore the B − L models, if the Z ′ boson 
mass is beyond the search reach of the HL-LHC experiment.

Let us now investigate the RHN pair production at the 250 GeV 
ILC. The relevant process is e+e− → Z ′∗ → Ni Ni mediated by a 
virtual Z ′ boson in the s-channel. Since the collider energy 

√
s =

250 GeV is much smaller than mZ ′ , the RHN pair production cross 
section is approximately given by

σ (e+e− → Z ′∗ → Ni Ni)

≃ (Q Ni )2

24π
s
(

gBL

mZ ′

)4
(

1 −
4m2

Ni

m2
Z ′

) 3
2

. (8)

For our benchmark RHN mass spectra, we show in Fig. 2 the 
RHN pair production cross sections at the 250 GeV ILC, along 
the prospective HL-LHC bounds on mZ ′/gBL shown in Fig. 1. For 
mZ ′ = 7.5 TeV, we have found σ (e+e− → Z ′∗ → Ni Ni) = 0.0085
and 0.14 fb for mN1,2,3 = 50 GeV and mN1,2 = 50 GeV, respectively, 
for the minimal and alternative B − L models. For the degenerate 
RHN mass spectra, we have 

∑3
i=1 σ (e+e− → Z ′∗ → Ni Ni) = 0.026

fb and 
∑2

i=1 σ (e+e− → Z ′∗ → Ni Ni) = 0.29 fb for each model, and 
thus 52 and 576 events with the 2000/fb goal luminosity of the 
250 GeV ILC, while satisfying the prospective constraints after the 
HL-LHC with the 3000/fb integrated luminosity. Considering the 
smoking-gun signature of the RHN pair production for which the 
SM backgrounds are few, the 250 GeV ILC can operate as a Majo-
rana RHN discovery machine towards confirming the type-I seesaw 
mechanism. In the second stage of the ILC with 

√
s = 500 GeV [9]

we expect roughly 4 times more events with the same goal lumi-
nosity.

For detailed discussion about the ILC phenomenology, we need 
to consider the decay processes of the heavy neutrinos. Assuming 
|mij

D/mN j | ≪ 1 in Eq. (2) or Eq. (4), the type-I seesaw mechanism 
leads to the light Majorana neutrino mass matrix of the form:

mν ≃ mD M−1
N mT

D = 1
mN

mD mT
D , (9)

where MN = mN 1 with the 3 × 3 (2 × 2) identity matrix 1 for 
the minimal (alternative) B − L model. Through the seesaw mech-
anism, the SM neutrinos and the RHNs are mixed in the mass 
eigenstates. The flavor eigenstates of the SM neutrinos (ν) are ex-
pressed in terms of the light (νm) and heavy (Nm) Majorana neu-
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on gBL as a function of mZ ′ from the ATLAS 2017 results. For the 
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10−5 fb over the range of 2.5 ≤ mZ ′ [TeV] ≤ 7.5, which results in a 
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on gBL as a function of mZ ′ , it is more useful to plot the LHC lower 
bound on mZ ′/gBL , which is shown in Fig. 1. The lower and upper 
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chine than the LHC to explore the B − L models, if the Z ′ boson 
mass is beyond the search reach of the HL-LHC experiment.

Let us now investigate the RHN pair production at the 250 GeV 
ILC. The relevant process is e+e− → Z ′∗ → Ni Ni mediated by a 
virtual Z ′ boson in the s-channel. Since the collider energy 

√
s =

250 GeV is much smaller than mZ ′ , the RHN pair production cross 
section is approximately given by

σ (e+e− → Z ′∗ → Ni Ni)
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For our benchmark RHN mass spectra, we show in Fig. 2 the 
RHN pair production cross sections at the 250 GeV ILC, along 
the prospective HL-LHC bounds on mZ ′/gBL shown in Fig. 1. For 
mZ ′ = 7.5 TeV, we have found σ (e+e− → Z ′∗ → Ni Ni) = 0.0085
and 0.14 fb for mN1,2,3 = 50 GeV and mN1,2 = 50 GeV, respectively, 
for the minimal and alternative B − L models. For the degenerate 
RHN mass spectra, we have 

∑3
i=1 σ (e+e− → Z ′∗ → Ni Ni) = 0.026

fb and 
∑2

i=1 σ (e+e− → Z ′∗ → Ni Ni) = 0.29 fb for each model, and 
thus 52 and 576 events with the 2000/fb goal luminosity of the 
250 GeV ILC, while satisfying the prospective constraints after the 
HL-LHC with the 3000/fb integrated luminosity. Considering the 
smoking-gun signature of the RHN pair production for which the 
SM backgrounds are few, the 250 GeV ILC can operate as a Majo-
rana RHN discovery machine towards confirming the type-I seesaw 
mechanism. In the second stage of the ILC with 

√
s = 500 GeV [9]

we expect roughly 4 times more events with the same goal lumi-
nosity.

For detailed discussion about the ILC phenomenology, we need 
to consider the decay processes of the heavy neutrinos. Assuming 
|mij

D/mN j | ≪ 1 in Eq. (2) or Eq. (4), the type-I seesaw mechanism 
leads to the light Majorana neutrino mass matrix of the form:

mν ≃ mD M−1
N mT

D = 1
mN

mD mT
D , (9)

where MN = mN 1 with the 3 × 3 (2 × 2) identity matrix 1 for 
the minimal (alternative) B − L model. Through the seesaw mech-
anism, the SM neutrinos and the RHNs are mixed in the mass 
eigenstates. The flavor eigenstates of the SM neutrinos (ν) are ex-
pressed in terms of the light (νm) and heavy (Nm) Majorana neu-
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the prospective HL-LHC bounds on mZ ′/gBL shown in Fig. 1. For 
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i=1 σ (e+e− → Z ′∗ → Ni Ni) = 0.026
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250 GeV ILC, while satisfying the prospective constraints after the 
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10−5 fb over the range of 2.5 ≤ mZ ′ [TeV] ≤ 7.5, which results in a 
lower bound on mZ ′ > 6.4 TeV for the sequential SM Z ′ boson.

For the following ILC analysis, instead of the LHC upper bound 
on gBL as a function of mZ ′ , it is more useful to plot the LHC lower 
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B − L model, the Z ′ boson decay to a pair of RHNs dominates 
the total decay width and hence the branching ratio into dileptons 
is relatively suppressed, resulting in the LHC constraints weaker 
than those for the minimal B − L model. Note that the LHC con-
straint for mZ ′/gBL becomes dramatically weaker as mZ ′ increases. 
Since the ILC energy is much smaller than mZ ′ , the Z ′ boson medi-
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sional operators which are proportional to (mZ ′/gBL)
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Let us now investigate the RHN pair production at the 250 GeV 
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virtual Z ′ boson in the s-channel. Since the collider energy 
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RHN pair production cross sections at the 250 GeV ILC, along 
the prospective HL-LHC bounds on mZ ′/gBL shown in Fig. 1. For 
mZ ′ = 7.5 TeV, we have found σ (e+e− → Z ′∗ → Ni Ni) = 0.0085
and 0.14 fb for mN1,2,3 = 50 GeV and mN1,2 = 50 GeV, respectively, 
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fb and 
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i=1 σ (e+e− → Z ′∗ → Ni Ni) = 0.29 fb for each model, and 
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250 GeV ILC, while satisfying the prospective constraints after the 
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smoking-gun signature of the RHN pair production for which the 
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we expect roughly 4 times more events with the same goal lumi-
nosity.
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FIG. 3: Top panel: The lifetime (times speed of light) of N1 (solid),
N2 (dashed) and N3 (dotted) for the NH light neutrino mass spec-
trum, for mN = 50 GeV. Bottom panel: Same as the top panel but
for the IH light neutrino mass spectrum.

for the NH case is given by the lifetime of N2,3, respectively,
in the limit of mlightest → 0. For the IH case, the lifetime
of N1,2 corresponds to the lifetime of N1,2, respectively, in
the limit of mlightest → 0. However, we have to be careful.
These results are true only if vν = 246 GeV in Eq. (4). In the
alternative B−L model, the neutrino Dirac mass is generated
from the VEV of the new Higgs doublet Hν which only cou-
ples with neutrinos. This structure is nothing but the one in the
so-called neutrinophilic two Higgs doublet model [24]. In or-
der to avoid a significant change of the SM Yukawa couplings,
we normally take vν ≪ vh ≃ 246 GeV. This means that the
actual lifetime of N1,2 is shorten by a factor of (vν/vh)2 ≪ 1.
However, N1 or N2 can still be long-lived.
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Longest lived RHN life time is inversely proportional to mlightest
mlightest → 0 leads to the long lived species as a potential DM candiadte

B − L case, xH = 0
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Conclusions

Thank You
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under the simple extension of the SM .
These models are equiped with the heavy neutrinos

SM can not explain the orgin of the tiny neutrino mass .
We consider some benchmark models which can explain the
origin of tiny neutrino mass .

These heavy neutrinos can mix with the light neutrinos .

In thsese models there is a neutral BSM gauge
interacts with the heavy neutrinos .boson Z′� which directly

Generalizing the mixings and reproducing the neutrino oscillation data
we have studied the production of the RHNs : prompt and boosted .
We finally probed the light heavy mixings successfully
beyond the EWPD at the e−e+colliders .

This could be a good source to study the long − lived RHNs .


