Probing heavy neutral leptons at the electron positron collider

Arindam Das Osaka University ILDAnalysis/ SoftwareMeeting

November 4, 2020

Over the decades experiments have found each and every missing pieces

> Verified the facts that they belong to this family

Finally at the Large Hadron collider Higgs has been observed Its properties must be verified

Strongly established with interesting shortcomings Few of the very interesting anomalies : Tiny neutrino mass and flavor mixings

Prediction of dear mass and flavor mixings
Relic abundance of dark matter ...
Unkown
Nature : Majorana/ Dirac
Ordering : Normal/Inverted
Nature of the mixing between the mass and the flavor eigenstates

Particle content

Dobrescu, Fox; Cox, Han, Yanagida; AD, Okada, Raut; AD, Dev, Okada; Chiang, Cottin, AD, Mandal; AD, Takahashi, Oda, Okada

		$SU(3)_c$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	en	3	$U(1)_X$	$m = 2 \alpha v$
	q_L^i	3	2	+1/6	x_q	—	$\frac{1}{6}x_H + \frac{1}{3}x_\Phi$	$m_{Z'} - 2 g_X v_{\Phi}$
	u_R^i	3	1	+2/3	x_u	—	$\frac{2}{3}x_H + \frac{1}{3}x_\Phi$	x_{II} , x_{Φ} will appear
	d_R^i	3	1	-1/3	x_d	—	$-\frac{1}{3}x_H + \frac{1}{3}x_\Phi$	the coupling with \mathbf{Z}'
	ℓ_L^i	1	2	-1/2	x_ℓ	—	$-\frac{1}{2}x_H - x_\Phi$	the coupling with Z
	e_R^i	1	1	-1	x_e	—	$-x_H - x_\Phi$	
	Η	1	2	+1/2	x'_H	=	$\frac{1}{2}x_H$	
	N_R^i	1	1	0	x_{ν}	=	$-x_{\Phi}$	
	Φ	1	1	0	x'_{Φ}	=	$2x_{\Phi}$	
3 generations of				I		<i>โลกมมระบรรรรการแกรกเรากรากการสามมระหาวารการการการ</i> 	*	
SM singlet right handed neutrinos (anomaly free) the a				Charges before anomaly cancellations			Charges after Imposing the anomaly	
U(1)						akiı	ng	cancellations
\mathcal{L}_Y :	$) - \sum_{i,j=1}^{3}$	$\sum_{i=1}^{i} Y_D^{ij} \overline{\ell_L^i} H$	$V N_R^j - \frac{1}{2} \sum_{i}^{N_R^j}$	$\sum_{k=k}^{3} Y_N^k \Phi \overline{N_j}$	$\overline{k c R} N_R^k$ -	+ h	c., $\begin{pmatrix} 0 & M_I \end{pmatrix}$	$ \rightarrow $
		$m_D^{ij} = \frac{Y}{v}$	$\frac{\frac{ij}{D}}{\sqrt{2}}v_h$	$m_{N^i} =$	$=rac{Y_N^i}{\sqrt{2}}v$	Φ	$m_{\nu} = \left(M_D^T \ M_N \right)$	$\binom{2}{N} m_{\nu} \simeq -M_D M_N^{\dagger} M_D^{\dagger}$
4							Sees	aw mechnism

Assuntingetiinterration of althe Right Handed Neutring a through the state of the state GeV seesanwebrannes, Alexane Chighti Aliayor an Elayor in the Ear ac expressed in the sease at price the and many of our collegessed as $\nu_{\ell} \simeq U_{\ell n} \nu_{\mu} + V_{\ell n} N_{n}^{m_{D}}$ $m_{\nu} \simeq -m_{D} m_{N}^{-1} m_{D}^{T}.$ PMNS matrix (3)We express the light neutrinov flator eigenstate (ν) in terms of the mass eigenstate (ν) in terms of the mass eigenstate (ν) in terms of the mass eigenstate (ν) is the mass eigenstate (ν) in terms of the mass eigenstate (ν) is the mass eigenstate (ν) in terms of the mass eigenstate (ν) is the mass eigenstate (ν) in terms of the mass eigenstate (ν) is the mass eigenstate (ν) in terms of the mass eigenstate (ν) is the mass eigenstate (ν) in terms of the mass eigenstate (ν) is t tates of the light (ν_m) and heaving the hierarchy of $m_{such as}^{ij}/m_{as}^{k}$ $\leq \mathcal{M}_m$ with go halize the mass $m_D m_N^{-1}$, $\mathcal{N} \sec(\operatorname{Saw_2^1}(\operatorname{DVmp}))$ at for $\pm h^{\mathbb{R}^*} \mathcal{R}^*_{\mathcal{D}}(\operatorname{Abd})$ and $\mathcal{N}_{\mathcal{A}}(\operatorname{Abd})$ and seesaw formula for the light Majorana neutrinos as $m_{\nu}^{T} = m_{D}^{T} m_{N}^{T} m_{D}^{T}$. $U_{\rm MNS}^T m_{\nu} U_{\rm MNS} = {\rm diag}(m_1, m_2, m_3).$ (4)In the preserve expression hight we us not the multiplication $m_{\nu} \simeq -m_D m_N^{-1} m_D^T$. In terms of the neutrino massicigenstates, the charged current interaction can be written the main of as $m_D n_{i} \overline{g}h_{i} M_{m} \neq (1d heav U_{MNSn} W Majoran R*Ritrianos UNAS is the neutrin$ h diagonanzes the hight new plus wills mass fragely, and is the peutrine where ℓ_{α} ($\alpha = e, \mu, \tau$) denotes the light neutrino mass mass matrix as denotes the three generations of the charged leptons, and $P_L = T$ $U_{\text{MNS}} = \text{diag}(m_1, m_2, m_3).$

Properties of the model and phenomenology New particles Z' boson Heavy Majorana Neutrino $U(1)_X$ Higgs boson Phenomenology Z' boson production and decay Z' boson mediated processes Heavy neutrino production $U(1)_{X}$ Higgs phenoemenology : Vacuum Stability collider Dark Matter Leptogenesis and many more Dev, Pilaftsis; Iso, Okada, Orikasa Orikasa, Okada, Yamada; Dev, Mohapatra, Zhang

Z' boson and heavy neutrino phenomenology

Cuts	Signal	$\nu_e e W$	WW	ZZ	tī	Total
Basic Cuts	12,996,200	201,586	72,244	7,200	4,300	285,330
$ \cos \theta_I \le 0.85$	12,789,800	148,802	44,910	3,800	4,100	201,600
$ \cos\theta_e \le 0.85$	12,671,800	79,008	40,574	2,800	3,900	126,280
$p_T^J > 150 \text{ GeV}$	12,308,300	70,669	40,490	2,300	3,200	116,660
$M_{I} > 70 \text{ GeV}$	10,923,100	62,303	37,043	2,100	2,300	103,700
$p_T^{\check{\ell}} > 100 \text{ GeV}$	10,714,500	57,076	33,488	1,400	1,530	93,400

Cut flow for the signal and background events for the final state $e^{\pm} + J + p_T^{\text{miss}}$ for $M_N = 500$ GeV at the $\sqrt{s} = 1$ TeV linear collider. The signal events are normalized by the square of the mixing.

Cut flow for the signal and background events for the final state $e^{\pm} + J + p_T^{\text{miss}}$ for $M_N = 800$ GeV at the $\sqrt{s} = 1$ TeV linear collider. The signal events are normalized by the square of the mixing.

Cuts	Signal	$\nu_e eW$	WW	ZZ	tī	Total
Basic Cuts	8,684,990	201,586	72,244	7,200	4,300	285,330
$ \cos \theta_I \le 0.85$	8,649,570	148,802	44,910	3,800	4,100	201,600
$ \cos \theta_e \le 0.85$	8,618,420	79,008	40,574	2,800	3,900	126,280
$p_T^J > 250 \text{ GeV}$	7,681,440	59,001	40,329	2,303	2,720	104,354
$M_{I} > 70 \text{ GeV}$	7,176,280	53,990	36,997	2,187	2,282	95,437
$p_T^{\check{\ell}} > 200 \text{ GeV}$	7,080,200	38,729	26,208	942	613	66,493

Alternative scenario under $U(1)_{x}$

AD. Okada, Raut AD Okada Okada Paut

	AD, Okada, Okada, Naut				
		$SU(3)_c$	$SU(2)_L$	$U(1)_Y$	$U(1)_X$
	q_{L_i}	3	2	1/6	$(1/6)x_H + (1/3)$
	u_{R_i}	3	1	2/3	$(2/3)x_H + (1/3)$
	d_{R_i}	3	1	-1/3	$-(1/3)x_H + (1/3)$
	ℓ_{L_i}	1	2	-1/2	$(-1/2)x_H - 1$
	e_{R_i}	1	1	-1	$-x_{H} - 1$
Possible alternative $\mathbf{R} - \mathbf{I}$ with $\mathbf{x}_{tr} = 0$	Н	1	2	-1/2	$(-1/2)x_H$
H = 0	$N_{R_{1,2}}$	1	1	0	-4
	N_{R_3}	1	1	0	+5
Detailed apples apples at a starder	H_E	1	2	-1/2	$(-1/2)x_H + 3$
Detailed scalar sector study	Φ_A	1	1	0	+8
In Progress	Φ_B	1	1	0	-10
	Φ_C	1	1	0	-3
$\mathcal{L}_{Y} \supset -\sum_{i=1}^{3} \sum_{i=1}^{2} Y_{D}^{ij} \overline{\ell_{L}^{i}} H_{E} N_{R}^{j} - \frac{1}{2} \sum_{k=1}^{2} Y_{N}^{k} \Phi_{A} \overline{N_{R}^{k^{c}}} N_{R}^{k} - \frac{1}{2} Y_{N}^{3} \Phi_{B} \overline{N_{R}^{3^{c}}} N_{R}^{3} + \text{h.c.}$					

Detailed scalar sector study In Progress

15

Bounds on the $U(1)_X$ gauge coupling

 $ee(139 \text{ fb}^{-1}) + \mu\mu(140 \text{ fb}^{-1})$ $\sigma_{fid} \times B \; [fb]$ 10^{-4} $[\sigma \cdot B] Z' / [\sigma \cdot B] Z$ ATLAS CMS Obs. 95% CL limit 10 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ Preliminary ----- Exp. 95% CL limit, median $X \to \parallel$ 10^{-5} Exp. (68%) Exp. (95%) 10⁻⁶ ---- Z'_{SSM} Z'_ψ 10- 10^{-7} 10^{-2} Observed limit at $\Gamma/m = 10\%$ Expected limit at $\Gamma/m = 10\%$ 10^{-8} ---- Γ/m = 3% = - $\Gamma/m = 0\%$ — Z'_{SSM} model 2000 3000 4000 5000 1000 4000 5000 6000 1000 2000 3000 M [GeV] .⊑^{10¹′} 8 [qd д 10⁻¹ \rightarrow ee, $\sqrt{s} = 14$ TeV, 3000 fb⁻¹, $\langle u \rangle = 200$ ATLAS Simulation --- Expected limit 2*l*, $\sqrt{s} = 14 \text{ TeV}, 3000 \text{ fb}^{-1}$ Expected $\pm 1\sigma$ **s**Simulation ь Expected $\pm 2\sigma$ $Z' \rightarrow ee$ 10⁻² -Z'_{SSM} $- Z/\gamma^* \rightarrow \parallel$ <u> = 200 10⁶ 10⁻³ .Observer 10⁵ *|8*¹⁰⁴ 10-4 $\sigma_{\rm Model}$ 10³ 10⁻⁵ 10² g^2_{Model} 10 10⁻⁶ 10- 02710^{-1} 2×10³LAS 3.5 5.5 6.5 7.5 3 70 10² 2×10² 10³ 4.55 6 16 M_{z'} [TeV] ee

CMS PAS EXO - 19 - 019

Production of the heavy neutrino at the ILC

SM can not explain the orgin of the tiny neutrino mass. We consider some benchmark models which can explain the origin of tiny neutrino mass.

These models are equiped with the heavy neutrinos under the simple extension of the SM.

These heavy neutrinos can mix with the light neutrinos. Generalizing the mixings and reproducing the neutrino oscillation data we have studied the production of the RHNs : prompt and boosted. We finally probed the light heavy mixings successfully beyond the EWPD at the e^-e^+ colliders.

In these models there is a neutral BSM gauge boson Z' which directly interacts with the heavy neutrinos. This could be a good source to study the long – lived RHNs.

