$\widetilde{\tau}$ searches at the ILC

Teresa Núñez - DESY

- Motivation
- Conditions and tools
- Signal characterisation
- Background
- Limits with general cuts
- Detailed study not excluded regions

ILD Analysis/Software Meeting, 04-11-20

• Current status and prospects

QUANTUM UNIVERSE

Motivation

Searching SUSY focused on best motivated NLSP candidates and most difficult scenarios

$\widetilde{ au}$ satisfies both conditions

- High probability to be the lightest sfermion (stronger trilinear couplings)
- More difficult signal identification than the other sfermions (decay to T's)

Motivation

Searching SUSY focused on best motivated NLSP candidates and most difficult scenarios

$\widetilde{ au}$ satisfies both conditions

- High probability to be the lightest sfermion (stronger trilinear couplings)
- More difficult signal identification than the other sfermions (decay to T's)

Conditions and tools

$\widetilde{\tau}$ searches in worst scenario using SGV fast simulation

- Mixing angle set to 53 degrees (lowest cross sections)
- Small mass difference with LSP ($\Delta M < 11 \text{ GeV}$)

ILC experimental conditions

Polarization P(e⁻,e⁺)=(+80%,-30%)

GEME

• $\sqrt{s} = 500 \text{ GeV}$ with 1.6 ab⁻¹ integrated luminosity (H-20, I-20 ILC500)

Event reconstruction using SGV adapted to the ILD detector concept at ILC

- Signal: Phytia 6.422
- Background: Whizard 1.95 (standard DBD background samples)
- Veto BeamCal as preselection

Root ntuples for analysis

Signal characterisation

Signal characterization (ctd.)

Signature:

- large missing energy and momentum
- high acollinearity, with little correlation to the energy of the decay products
- large fraction of detected activity in central detector (isotropic production of scalar particles)
- unbalanced transverse momentum
- no forward-backward asymmetry

SM processes with real or fake missing energy

Irreducible

• ZZ -> vvtt, WW -> tv tv

Almost irreducible

2-T production partially escaping detection

- ee -> ττ, ZZ -> vvII, WW -> lv lv (I = e or μ)
- ee -> ττ + ISR, ee -> ττ ee, γγ -> ττ

yy interactions

4-fermion production with two

of the fermions being neutrinos and two leptons

General cuts

Properties $\widetilde{\tau}$ -events "must" have

- Missing energy (E_{miss}). E_{miss} > 2*MLSP GeV
- Visible mass (mvis). mvis < 2*(Mτ̃ MLSP) GeV
- Momentum of all jets (pjet). pjet < 70% Beam Momentum (or $M\tilde{\tau}/MLSP$ dependent)
- Number of charged particles (ncha). 1< ncha < 6
- Number of clusters identified as τ (nclu). nclu = 2 or 3
- T-indentification
- Total charge (totcharge). totcharge = 0, +/- 1
- Maximum jet momentum:

Above 95 % signal efficiency for each of these cuts (excluding for the τ-identification)

$$P_{max} = \frac{\sqrt{s}}{4} (1 - (\text{MLSP} - M\tilde{\tau})^2 (1 + \sqrt{1 - \frac{4M\tilde{\tau}^2}{s}})$$

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

General cuts (ctd.)

Tau identification

- Pattern of charged tracks from T-decay:
 - Exactly two jets with charged particles
 - 1 or 3 charged particles in each charged jet, with total charge +/-1
 - Two jets with opposite charge
- Reduction of background from sources with leptons not from T-decays
 - Two charged jets not made by single leptons with same flavor
 - None of the jets made by single positron (RL beam polarization)
 - Most energetic jet should not be a single electron

Signal efficiency ~ 40% but reduce the background by ~ 94 %

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

General cuts (ctd.)

Properties $\tilde{\tau}$ -events "might" have but background "rarely" has

- Missing transverse momentum (ptmiss). ptmiss > 2-4 GeV (depending on mass difference)
- Large acoplanarity (thetaacop). 0.2 rad < thetaacop < 2. rad
- Large transverse momentum wrt. thrust-axis (rho). rho > 2-4 GeV(depending on mass difference)
- High angles to beam (thetaptot). 0.79 rad < thetaptot < 2.84 rad

Cuts against properties of some almost irreducible sources of background

- Charge asymmetry (cha_asym: Σ*charge* * cos(*polar_angle*)). char_asym > -1
- Difference between visible mass and Z mass (Z_peak). Z_peak > 4 GeV

Properties that the background often "does not" have

- Low energy in small angles (e30: energy in 30 degrees cone around the beam axis). e30 < 10 GeV
- Maximum energy of isolated neutral clusters (pmaxneuc). pmaxneuc < 10% beam momentum

Signal/	Back	ground re	duction		P(e ⁻ ,e ⁺)=(+80%,-30%), Mτ=247GeV, ΔM=10GeV					
	Signal		0.0 > T		aa->11	ee->uuvv.ll´vv	00->1111	ee->others	aa->IIII	22->
Total	265	24191	2051799	25944	157254000	586930	2325654	13383974	37096	322692096
Missed E	265	1347	89206	3474	109269880	11516	318367	24	1698	178861408
Visible Mass	264	1298	88297	2647	108400824	11369	317781	14	1044	171774796
Nb ch part	255	995	20815	2136	101468816	3206	11020	8.1	1028	167016624
Pjet	242	639	12931	1188	84502640	1975	5982	0	406	123845000
Tau ID	94	161	2448	17	31606836	21	0	0	1.4	1947
Maximum Pje	t 94	140	2066	13	29692016	16	0	0	1.0	1469
Missed Pt	73	85	337	6.6	1048857	10	0	0	0.6	1162
Өасор	50	56	9.4	4.8	113049	5	0	0	0.3	785
Optot	46	48	8.8	4.3	86407	2	0	0	0.3	239
Rho	8.0	1.7	0	0.2	0	0	0	0	0.02	0
Low angle E	8.0	1.7	0	0.2	0	0	0	0	0.02	0
WW/Z	7.4	1.7	0	0.2	0	0	0	0	0.02	0

Notes: Tau ID includes nb clusters + total charge

Signal excluded at 95% CL ($S > 2\sqrt{S+B}$)

Remaining events for inverse polarization (LR) and not polarized (NP) beams

		JUNATI			Not ex	Not exclusion for LR or NP beams						
NP	6 I GEMEINS	12 SCHAET	0	0.2	0	0	0	0	0.02	0		
LR	5.7	28	0	0.2	0	0	0	0	0.02	0		

Comparison DM = 10 GeV vs DM = 2 GeV

Cut in Rho does not allow to cut the $\gamma\gamma$ background for $\Delta M = 2 \text{ GeV}$

Limits with general cuts

Two main effects

- WW background decreases with decreasing ΔM (kinematic cut in pjetmax)
- $\gamma\gamma$ background very similar to the signal for small ΔM

Where are we (preliminary)?

- $\Delta M = 10$ to 5 GeV -> exclusion limit up to $M\tilde{\tau} = ~247$ GeV
- $\Delta M = 4 \text{ GeV} \rightarrow \text{exclusion limit up to } M\tilde{\tau} = \sim 240 \text{ GeV}$
- $\Delta M = 3 \text{ GeV} \rightarrow \text{exclusion limit up to } M\tilde{\tau} = \sim 230 \text{ GeV}$
- $\Delta M = 2 \text{ GeV} \rightarrow$ fine tuning is needed due to $\gamma\gamma$ background

For luminosity 500 fb⁻¹

- $\Delta M = 10 \text{ GeV} \rightarrow \text{exclusion limit up to } M\tilde{\tau} = \sim 247 \text{ GeV}$
- $\Delta M = 5 \text{ GeV} \rightarrow \text{exclusion limit up to } M\tilde{\tau} = \sim 240-245 \text{ GeV}$
- $\Delta M = 4 \text{ GeV} \rightarrow \text{exclusion limit up to } M\tilde{\tau} = \sim 235-240 \text{ GeV}$
- $\Delta M = 3 \text{ GeV} \rightarrow \text{exclusion limit up to } M\tilde{\tau} = \sim 220 \text{ GeV}$

Detailed study not excluded regions

Further analysis done:

- Impact parameter -> does not help since remaining background comes from τ´s
- ISR photons -> improves limits for $\Delta M = 2$ and 3 GeV
 - select events with high transversal momentum and isolated photons

Detailed study not excluded regions

ΔM=2 GeV

Use the relation ptmiss vs pjet

Detailed study not excluded regions

ΔM=2 GeV

Use the relation ptmiss vs pjet

Improvements in analysis

- Use of relation between ptmiss and pjet for $\Delta M = 2 \text{ GeV}$
- Use sum of photon energy and number of photons for $\Delta M = 3 \text{ GeV}$

Limits for 1.6 ab⁻¹

- $\Delta M = 10$ to 4 GeV -> exclusion limit up to $M\tilde{\tau} = \sim 247$ GeV
- $\Delta M = 3 \text{ GeV} \rightarrow \text{exclusion limit up to } M\tilde{\tau} = \sim 243 \text{ GeV}$
- $\Delta M = 2 \text{ GeV} \rightarrow \text{exclusion limit up to } M\tilde{\tau} = \sim 240 \text{ GeV}$

For luminosity 500 fb⁻¹

- $\Delta M = 10 \text{ GeV} \rightarrow \text{exclusion limit up to } M\tilde{\tau} = \sim 247 \text{ GeV}$
- $\Delta M = 5 \text{ GeV} \rightarrow \text{exclusion limit up to } M\tilde{\tau} = \sim 240-245 \text{ GeV}$
- $\Delta M = 4 \text{ GeV} \rightarrow \text{exclusion limit up to } M\tilde{\tau} = \sim 235-240 \text{ GeV}$
- $\Delta M = 2 \text{ GeV} \rightarrow \text{exclusion limit up to } M\tilde{\tau} = \sim 230 \text{ GeV}$

Next steps

- Study the region with $\Delta M < MT$
- Study effects of tau polarization from stau decays
- Use full reconstructed background samples
- Cross-check with previous studies
- Increase statistics

No LHC limit for $\tilde{\tau}$

