
Kyushu University
Kiichi Goto,

Taikan Suehara, Kiyotomo Kawagoe

ILD software/analysis meeting 11/4

ILD software/analysis meeting
Vertex Finder with Deep Learning

Contents
1. Introduction
• Vertex Finder
• Deep Learning

2. Networks
• Networks
• LSTM for Vertex Finder
• Training and Performance
• Attention

3. Vertex Finding
• Algorithm for Vertex Finding with Deep Learning
• Comparison with LCFIPlus

4. Inference with C++
• For Evaluation in LCFIPlus

5. Summary and Next step

ILD software/analysis meeting 11/4 1

๏ Purpose : To know which vertex does the track come from

• Now, in ILC the "LCFIPlus" is used for "Vertex Finding"
• Evaluate based on some thresholds tuned by human :  
Cut base analysis 
➡ Improve using deep learning

• Data property (used in this study)
• Using Monte Carlo simulation data that the final state is
• The labels of training data are created from MC truth
• Using following variables as track information (22 variables)
- Helix parameters (d0, z0, 𝛟, 𝛚, tan𝛌)
- Charge
- Energy

bb̄

Vertex Finder

1. Introduction
All tracks in one event

Primary Vetex

Secondary Vertex
Semi-stable Particle

electronpositron

When the final state is ,
Secondary Vertex of flavor c are generated

bb̄

B
Cvertex bb
vertex cc

ILD software/analysis meeting 11/4 2

Deep Learning
• One of the Machine Learning technologies
• Basically it is "Supervised Learning", and can solve "Classification" and "Regression"
‣ Supervised Learning : pattern recognition based on training data
• fitting output to training by weight updating

• Complex (non-linear) problems can be solved by "layering" simple (linear) networks
• Recently, various practical networks are provided

layering

input output

Recurrent Neural Networks : can process the series data

ht−1 xt

ht xt+1

ht+1 xt+2

RNN

RNN

ht

RNN RNN RNN

xt x0 x1

h0 h1
h0 h1

1. Introduction

ILD software/analysis meeting 11/4 3

Networks

2. Networks
• Finding the vertex using two networks
1. The network for track pairs
• Classify the track pairs to the vertex classes
- Input : "Track pair (Two tracks)"
- Output : "Not connected" "Primary Vertex" "Secondary Vertex"
➡ Search for the "seed" of the vertex

2. The network for any number of tracks
• Determine whether any number of tracks are connected
- Input : "The seed of the vertex" "Any number of tracks"
- Output : "Connected" "Not connected"
➡ Reconstruct the vertex with adding the tracks to the seed evaluated by "network 1"

Vertex Finding

Deep Learning

ILD software/analysis meeting 11/4 4

2. Networks

All combination of track pairs
[Track 0, Track 1],
[Track 0, Track 2],
[Track 0, Track 3], ...

Primary Vertex

Secondary Vertex

Not connected

Networks

ILD software/analysis meeting 11/4

Using
connected pair
(Primary and
Secondary)

as the initial state

1. The network for track pairs (seed finding)

2. The network for any number of tracks (vertex production)

5

LSTM for Vertex Finder
• The track data are not "sequential data" ➡ extend the "LSTM"
‣ LSTM (Long short-term memory) : One of the DL techniques, it can process the series data

1. Determine whether the Track N is connected to the Vertex N-1
2. Calculate the updated Vertex with the Track N
3. In "1", if it is determined to be connected, the updated Vertex, 
if it is determined to be not connected, the Vertex N-1 is adopted as the Vertex N

hN = σ(Dh[σ(WotN + RoVN−1) ⋅ tanh(VN−1)])
UN = σ(WitN + RiVN−1) ⋅ tanh(WztN + RzVN−1) + σ(WftN + RfVN−1) ⋅ VN−1

VN = (1 − hN)VN−1 + hNUN

Track N

Vertex N-1 Vertex N

Output

１

２

３

Connected or not

Calculate
the updated Vertex

Choose new Vertex

or

2. Networks

ILD software/analysis meeting 11/4 6

1 2 3 4

3 1 4 2

1 epoch

Shuffle

Accuracy

- Loss function : binary cross entropy
- Optimization/Learning rate : Adam/0.001
‣ The method of weight update and step width

- The number of training (Epoch) : 100 epochs
- Batch size : 32
‣ The number of samples per a weight update

‣ Hardware : TITAN RTX × 2

- 20000 Event (1159547 samples) ➡ Randomly chosen 50000 samples per a epoch
‣ Create one training sample per a seed

- Zero padding and masked
- "Zero padding" by the maximum number of tracks for all events  
"Masked" not to influence the training
- Actually, decoder can process any tracks

- Shuffle the sequence of tracks
- Since tracks are not sequential in nature,  
we shuffle the order of the tracks at each epoch

Training and Performance

2. Networks

ILD software/analysis meeting 11/4 7

• I want each track to give "attention" to all tracks in an event

• Tracks predicted to be connected  
can be received information from tracks
• it is necessary to study  
"which track" it is getting information from

Attention Attention weight

Zero padding

Decoder

Encoder

3
5

8, 9

14, 15
17 (誤)

21, 22
24
26, 27

⬅ line thickness
light/dark ➡

2. Networks

Encoder

Decoder

Track 1 Track 2 Track 3 Track 4 Track 5 ・・・

・・・

Track N

Track 1 Track 2 Track 3 Track 4 Track 5 Track N

ILD software/analysis meeting 11/4 8

Algorithm for Vertex Finding with Deep Learning

All combination of
track pairs

1. The network
for track pairs

Seed of
Primary Vertex

Seed of
Secondary Vertex

2. The network for
any number of tracks

2. The network for
any number of tracks

List of tracks arise from
Primary Vertex

List of tracks arise from
Secondary Vertex

Removing
Scramble

• Vertex finding with two networks
1. The network for track pairs
2. The network for any number of tracks

3. Vertex Finding

ILD software/analysis meeting 11/4 9

Comparison with LCFIPlus
• Comparison with performance of LCFIPlus
• T. Suehara, T. Tanabe, LCFIPlus: A framework for jet analysis in linear collider studies, 
Nuclear Instruments and Methods in Physics Research A 808 (2016) 109-116

• Items
• Labeled Primary by MC, predicted Secondary Vertex by DL
• Labeled Others by MC, predicted Secondary Vertex by DL
• Others : They are not Primary, Bottom, Charm

• Labeled Bottom by MC, predicted Secondary Vertex by DL
• Rate of the tracks chosen from same chain
• Rate of the tracks chosen from same particle

• Labeled Charm by MC, predicted Secondary Vertex by DL
• Rate of the tracks chosen from same chain
• Rate of the tracks chosen from same particle

Same Chain

Same particle

Primary Others Bottom Charm
Second 0.9% 10.6% 67.1% 72.9%
Chain 63.8% 69.6%
Particle 34.5% 43.4%

Primary Others Bottom Charm
Second 0.6% 2.5% 57.5% 64.3%
Chain 1.9% 56.6% 63.4%
Particle 1.2% 32.2% 38.9%

LCFIPlusThis study@average 100 events

3. Vertex Finding

ILD software/analysis meeting 11/4 10

For Evaluation in LCFIPlus
• I want to show the performance of Flavor Tagging with my Vertex Finder
➡ I need to run these networks in LCFIPlus

• LCFIPlus are written with "C++" and "Cmake", but the networks are constructed by "Python 3"

• Now I'm implementing the vertex finding with "C++"
• Completed running the networks from C++
• Almost same performance with Python could be obtained

4. Inference with C++

ILD software/analysis meeting 11/4

Vertex Finder
(C++)Data Standard OutputNow

Vertex Finder
(C++)Data LCIO OutputNext

Numpy (Python3)

LCIO (iLCSoft)

g++
C compiler

Cmake
LCFIPlus

11

5. Summary and Next step
• I'm constructing the networks for vertex finding
• I extend the LSTM for vertex finding and produced the vertex
• I can become to compare the performance with LCFIPlus
• Purity is little bit bad, but Efficiency is improved

• Now I try to run the my Vertex Finder in LCFIPlus

Primary Others Bottom Charm
Second 0.9% 10.6% 67.1% 72.9%
Chain 63.8% 69.6%
Particle 34.5% 43.4%

Primary Others Bottom Charm
Second 0.6% 2.5% 57.5% 64.3%
Chain 1.9% 56.6% 63.4%
Particle 1.2% 32.2% 38.9%

LCFIPlus

This study@average 100 events

ILD software/analysis meeting 11/4 12

Backup

ILD software/analysis meeting 11/4

Data property
• Using simulation data that the final state is
• The labels of training data are created from Monte Carlo
• Using following variables as track information (22 variables)
- Position and Momentum (Helix), Covariance Matrix
- Charge
- Energy

bb̄

When the final state is ,
Secondary Vertex of flavor c are generated

bb̄

The ratio of the number of samples
for the track pair (vertex) class The number of tracks in a event

The rate of the number of tracks
in each vertex type

B
Cvertex bb

vertex bc

vertex cc

1. Introduction

ILD software/analysis meeting 11/4

All combination of track pairs
[Track 0, Track 1],
[Track 0, Track 2],
[Track 0, Track 3], ...

Primary Vertex

Secondary Vertex

Not connected

Overview The network for track pair

The network for any number of tracks

Using
connected pair
(Primary and
Secondary)

as the initial state

Track 1

Initial state

Seed
(Track pair)

Track 2 Track 3 Track 4

c / n c / n c / n c / n

1 Event

Vertex production

connected / not

・・・

・・・

Track Nmax

Using track pair predicted by the network for track pair
as the initial state, create the vertex with LSTM

2. Networks

ILD software/analysis meeting 11/4

The model for track pairs -structure and performance-
• Use the simply network
• Weighted the loss function because of the imbalanced data
‣ Loss function : Evaluation function using to training

全結合 (Dense, BatchNormalization, ReLU)
全結合 (Dense, BatchNormalization, ReLU)
全結合 (Dense, BatchNormalization, ReLU)

Track pair (44 variables)

Secondary Primary Not connected

2. Networks

ILD software/analysis meeting 11/4

Approach using the LSTM (Long short-term memory)
๏ I want to construct the network that can process over two tracks
• Points
- The number of tracks included a event are different
- The number of vertices included a event are different
➡ Networks for variable length (Recurrent Neural Networks) are required

• Whether tracks are connected to the initial state (seed) : Trainable initial state

Track 1

Initial state

Seed
(Track pair)

Track 2 Track 3 Track 4

c / n c / n c / n c / n

1 Event

Vertex
production

connected / not

・・・

・・・

Track Nmax

2. Networks

ILD software/analysis meeting 11/4

Track N

UN = σ(WitN + RiVN−1) ⋅ tanh(WztN + RzVN−1)

+σ(WftN + RfVN−1) ⋅ VN−1

hN = σ(Dh[σ(WotN + RoVN−1) ⋅ tanh(VN−1)])

VN−1 VN

VN = (1 − hN)VN−1 + hNUN

tN

Vertex N-1 Vertex N[D] [D]

[D] [D] [D]

[1] [1]

[32]

[F, D] [F] [D, D] [D]

[D, 1]

[1]

[D]

Connected / not
hN

[F]

trainable weights
W, R, D

Vertex 0 V0
initial state

[1]

ILD software/analysis meeting 11/4

2. Networks

+
E

M
D

E M
F

F
D

= M
D

Encoder output

M
D

D = M

Track N * M

e N
Σ exp(e)
exp(e)

Attention weight N
M

E
M = E

Context N

Track N

Vertex N-1 Vertex N

Encoder output
[M, E]

[F]

× M
repeat

Context N
[E]

Output
UN = σ(WitN + RiVN−1 + CicN) ⋅ tanh(WztN + RzVN−1 + CzcN)

+ σ(WftN + RfVN−1 + CfcN) ⋅ VN−1

hN = σ(Dh[σ(WotN + RoVN−1 + CocN) ⋅ tanh(VN−1)])

Output

VN = (1 − hN)VN−1 + hNUN

Attention LSTM for Vertex Finder Additive Attention

ILD software/analysis meeting 11/4

2. Networks

[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30]
All (31) tracks

3

4

6
7

8
11

1215

161819

20
21
2325

27
28
30

5
10
17

0 2

14

9

24
26

Chain 1

Chain 2

[1, 13, 22, 29]
True Others

3. Vertex Finding

ILD software/analysis meeting 11/4

