International Development Team

Activities in IDT WG2 (Accelerator Design)

Benno List, DESY

European ILC Community Meeting

4.11.2020

IDT-WG2 organization

Bi-weekly *Tuesday* meeting: Sep.22, Oct. 6, 20,...

IDT WG2 Shin Michizono (Chair) Benno List (Deputy)

https://agenda.linearcollider.org/category/256/

SRF Oct. 13,27,...

DR/BDS/Dump Oct.13,27,...

, ,			
Yasuchika Yamamoto	KEK	Toshiyuki Okugi	KEK
Nuria Catalan	CERN	Karsten Buesser	DESY
Dimitri Delikaris	CERN	Philip Burrows	U. Oxford
Rongli Geng	JLAB	Angeles Faus-Golfe	LAL
Hitoshi Hayano	KEK	Jenny List	DESY
Bob Laxdal	Triumf	Thomas Markiewicz	SLAC
Matthias Liepe	Cornell	Brett Parker	BNL
Peter McIntosh	STFC	David L. Rubin	Cornell
Olivier Napoly	CEA	Nikolay Solyak	FANL
Sam Posen	FNAL	Luis Garcia Tabares	CIEMAT
Robert Rimmer	JLAB	Nobuhiro Terunuma	KEK
Marc C. Ross	SLAC	Glen White	SLAC
Akira Yamamoto	KEK	Kaoru Yokova	KEK

Hans Weise DESY

Charges of Sub-groups

- Discuss and coordinate the topics for
 - technical preparation (remaining topics) at Pre-lab
 - preparation for mass production at Pre-lab
 - possible schedule at Pre-lab
 - international sharing candidates of these activities
 - Report to the IDT-WG2

All members belong to some sub-group(s).

Sources		reekly Monday 12,26,				
	OCL.	12,20,				
Kaoru Yokoya		KEK				
Jim Clarke		STFC				
Steffen Doebert		CERN				
Joe Grames		JLAB				
Hitoshi Hayano		KEK				
Masao Kuriki		U. Hiroshima				
Benno List		DESY				
Gudrid Moortgat- Pick		U. Hamburg				
	_					

Civil engineering

Nobuhiro Terunuma KEK

John Andrew Osborne CERN

Tomoyuki Sanuki U. Tohoku

Note: Summer to Winter time transition will be specially considered at next sub-group meeting.

1pm (->2pm) UTC (6am US Pacific, 8am US Central, 2pm U.K., 3pm Geneva, 10pm (->11pm) Japan)

Accelerator activities at ILC Pre-lab phase

Technical preparations /performance & cost R&D [shared across regions]

- SRF performance R&D, quality testing of a large number of cavities (~100), fabrication and shipping of cryomodules from North America and Europe (for validating shipping)
- · Positron source final design and verification
- Nanobeams (ATF3 and related): Interaction region: beam focus, control; and Damping ring: fast kicker, feedback
- Beam dump: system design, beam window, cooling water circulation
- Other technical developments considered performance critical

Technical preparation

Final technical design and documentation [central project office in Japan and possibly regional project offices]

- Engineering design and documentation, WBS
- Cost confirmation/estimates, tender and purchase preparation, transport planning, mass-production planning and QA plans, schedule follow up and construction schedule preparation
- · Site planning including environmental studies, CE, safety and infrastructure (see below for details)

Engineering Design Report (EDR)

- Review office
- · Resource follow up and planning (including human resources)

Preparation and planning of deliverables [distributed across regions, liaising with the central project office and/or its satellites]

- Prototyping and qualification in local industries and laboratories, from SRF production lines to individual WBS items
- Local infrastructure development including preparation for the construction phase (including Hub.Lab)

Planning and preparation of Hub lab.

Financial follow up, planning and strategies for these activities

Civil engineering, local infrastructure and site [host country assisted by selected partners]

- Engineering design including cost confirmation/estimate
- Environmental impact assessment and land access
- Specification update of the underground areas including the experimental hall
- Specification update for the surface building for technical scientific and administrative needs

Civil engineering

4th IDT-WG2 meeting (Shin MICHIZONO)

3

Assumed Pre-lab timeline

For Engineering design

1st year: Work on TDR-based cost-estimate confirmation, started by an international team centered on the Pre-lab.

2nd year: Complete the cost-estimate confirmation, and an internal review in the latter half of the 2nd year.

The review also reports on the progress of technical issues during the preparation period.

3rd year: Conduct an external review and completed scrutiny of costs and risks.

Complete the draft of Engineering Design Report (EDR).

4th year: Publish EDR (in first half yr), report progress on technical issues, and prepare each large bid.

For technical preparation (example of SCRF and positron)

- 1st year: Extend SCRF cost reduction R&D, Start a pre-series SCRF cavities production preparing for industrialization Continue positron survey
- 2nd year: Complete SCRF cost-reduction R&D, and extend the work to assemble the cavities with cryomodule (CM), Select positron scheme
- 3rd year: Demonstrate "Global CM transfer, aiming at HPG legal-process, shipment, and SRF QA test after transport Mature Lab. planning and preparation

 Prototyping of critical items (such as positron target)
- 4th year: Evaluate CM performance based on CM shipment, and prepare for Hub Lab. functioning Progress prototyping of critical items (such as positron target)

1

Goals of Sub-WGs

Develop R&D plan for budget request to MEXT

SRF

- Timeline:
 - Feb 2021: Submit plan
 - Aug 2021: Budget decision
 - Apr 2022: Start of Japanese FY -> Pre-lab funding available

Main discussion items based on "Recommendations on ILC Project Implementation"

♦100 cavities produced in preparation for mass production

♦~1% of full production

◆ Cavity and cryomodule production

◆ Japan: 50 cavities, other regions/countries: 50 cavities

- ◆By new cost-effective production method
- ◆Plug-compatibility re-confirmed/re-established
- ◆ To be checked RF performance/success yield
- ♦ High pressure gas regulation in Japan (cavity/cryomodule production)
- ◆Coupler/tuner improved/produced/assembled/tested
- ◆Cryomodule production/test
- ◆ Cryomodule transport ("Global Cryomodule transfer")
 - ◆Shipment/transport incl. inspection
 - ◆RF performance rechecked after transport

Report of 3rd meeting of IDT WG2 SRF subgroup

e-Drive	n scheme								
	Subcomponent	Study Item (WP)	IDT period	Preparation period (4 years)				Tunnel construction	
				Effort		cost	possible	period	
						(MJPY)	partners		
	Electron driver		none	Engineering design					
	Target	Target stress calcuation	FEM calculation	FEM calculation					
		Vacuum seal	confirm the longterm seal performance,	none	Sour	$rac{1}{2}$	C		
			prototype		Outi		<u> </u>		
		Target module	Conceptual design	Engineering design, Prototyping,					
				Operation					
	Capture device (FC)	Flux concentator conductor	cooling design including the radiation	Engineering design	Omori	2			
		Power source	Conceptual Design	Engineering design	KEKB	2			
		Transmissin line	Conceptual Design	Engineering design	KEKB	1			
		system prototyping	none	Prototyping and operation	KEKB, Omori	100	J-lab		
	Capture linac	L-band APS cavity	Engineering design	Prototyping	Kuriki, Hayano	20			
		Transient Beamloading and its compensation	Construct the model	none	Kuriki	(CERN, J-Lab		
		Power unit prototype	Engineering design	Prototyping	Omori	100			
		fast position monitor (separate e+ and e-)	rely on KEKB	Prototyping	Hayano	4			
	Booster linac	L-band TW accelerator	Conceptual design	Engineering design	KEKB	1	J-lab		
		S-band TW accelerator	Conceptual design	Engineering design	KEKB	1	J-lab		
	Shield	CFS	Conceptual design	Engineering design	Hayano, Kuriki, Omori	2			
		Maintenance system	Conceptual Design, Estimate Radiation environment	Engineering design	Miyamoto, Sanami, Kuriki	2			

	Grade	Items	Technical Preparation	human reso	urces [FTE]	budget [kUS\$]	candiate collaoration	Presenter	Date
Damping Ring	A	Fast kicker	Long-term stability test						
	Α		Feedback : system design		_	/	_	-	2020/10/2
	A	Fast Ion Instability	Feedback : damping time test			79/	Dump		2020/10/2
	В		Evaluation by simulation		ט	\mathcal{O}	Duilib	וטע	2020/10/2
	В	Electron Cloud	Evaluation by simulation						2020/10/2
	B (?)	Parmanent Magnet	System design					I	
	B (?)	Injection kicker for e-driven P-source	System design						
		RF system	Prototype test	N/A		N/A	N/A	N/A	
		Wiggler Magnet	Prototype test	N/A		N/A	N/A	N/A	
BDS, MDI	A	ATF3	Long-term stability test				ATF (ATF3) collaboration	Angeles Faus-Golfe	
	В	Final doublet (incl. Anti-solengid)	System design (include the anti-solenoid)					Brett Parker	
	В	Final doublet (incl. Anti-solendid)	Vibration test					Brett Parker	
	B (?)	Crab cavity	System design					Yasuchika Yamamoto	
		Anti-solenoid	System design and vibration test	con		nsidered within FD package		Karsten Buesser	2020/10/2
		Anti-DID	System design	considered as detector matter			r matter	Karsten Buesser	2020/10/2
Beam Dump	A	17MW main dump	System design of water flow system					Nobuhiro Terunuma	2020/10/1
	A	1	System design of window sealing and remote exchange					Nobuhiro Terunuma	2020/10/1
	Α	1	System design of countermeasure for failure					Nobuhiro Terunuma	2020/10/1
	A/B (?)	1	Robustness test of window					Nobuhiro Terunuma	2020/10/1
	В	300kW photon dump	System design					Nobuhiro Terunuma	2020/10/1
Rank	Α	Technical preparation, which is recommended by KEK ILC international WG							
ridik.	В	Technical preparation, which is necessary to write EDR							

Europe Regional Report: SRF technology developments relevant to the ILC

Olivier Napoly CEA

Olivier Napoly's excellent overview at AWLC 2020:

https://agenda.linearcollider.org/event/8622/contributions/46392/

Please have a look

IDT

European has strong broad a SRF technology base

SRF Work / Competence Matrices

WG2 Plans for Prelab Phase and Summary

- SRF subgroup plan for R&D during Prelab phase
 - Produce ~100 cavities: 50% Japan, 50% abroad -> 25 cavities in Europe?
 - Produce ~2 cryo modules per region, verify transport
 - Resolve high pressure regulation issues
- BDS/Dump/DR subgroup:
 - Finalize Dump design(s)
 - ATF3 project
- Sources subgroup: Prepare for a concept downselect in 2022
- Aim: Fund prelab with ~200M€ over 4 years (2022-25), 2/3 Japan, 1/3 Foreign
 -> naïve scaling: 200M€ * 1/3 * ½ over 4 years => ~8M€/year from Europe
- AWLC discussions indicate interest by DOE and U.S. and Canadian labs
- Accelerator design will be finalized during years 1-2 (2022/23): cavity fabrication recipe, positron source concept etc
- Strong European Participation in IDT WG2 and its subgroups