flavor tagging performance: some preliminary understanding together with Ryo

$$d\mathcal{P}_a = \sum_{b,c} \frac{\alpha_{abc}}{2\pi} P_{a \to bc}(z) dt dz$$

$$dt = d\ln(Q^2) = \frac{dQ^2}{Q^2}$$

number of partons (Np): gluon jet is much "fatter"

observed
$$\frac{N_p^8}{N_p} = 1.6$$

(average, taken out initial partons)

expected ~2
$$P_{\mathrm{q\to qg}}(z) = C_F \, \frac{1+z^2}{1-z} \,,$$

$$P_{\mathrm{g\to gg}}(z) = N_C \, \frac{(1-z(1-z))^2}{z(1-z)} \,,$$

(from splitting kernel; dominated by z~1; more accurately, has to add Sudakov form factor, proper cut-off, etc., analytically hard)

all dominated by gluon splitting

quark mass effect in g->qq

$$N_d: N_c: N_b = 9.2:5.2:1$$

$$N_d: N_c: N_b = 2.9: 2.2: 1$$

qualitatively reasonable, since the gluons in H->uu samples have to come from splitting, carrying much lower Q2, which leads to larger effects from different quark masses

probability of getting heavy flavor partons

$$H \rightarrow u\bar{u}$$

$$\frac{N_b}{N_p} = 0.10\%$$

$$\frac{N_c}{N_p} = 0.52 \%$$

$$H \rightarrow gg$$

$$\frac{N_b}{N_p} = 1.1\%$$

$$\frac{N_c}{N_p} = 2.4\%$$

implication for gluon jet:

when b-tag efficiency is <~1%, it will scale linearly as a true b-jet does; when c-tag efficiency is <~2%, it will scale linearly as a true c-jet does

probability of getting heavy flavor partons

implication for gluon jet:

when b-tag efficiency is <~1%, it will scale linearly as a true b-jet does; when c-tag efficiency is <~2%, it will scale linearly as a true c-jet does