

Kyushu University

Mami Kuhara

Kiyotomo Kawagoe, Tamaki Yoshioka , Taikan Suehara

ILD and ECAL

ILD(International Large Detector)

- ILC collision point detector
- > Tracking detector :TPC
- > Particle ID → energy loss (dE/dx) and momentum

ECAL

SiW-ECAL : Absorption layers and detection

layers are alternately accumulated

 \blacktriangleright Pixel size : 5.5 \times 5.5 mm^2

LGAD

Timing resolution

> Possible to separate $\pi/K/p$ up to 3~5 GeV by 50 ps ToF with dE/dx at TPC

LGAD (Low Gain Avalanche Detector)

- > A silicon sensor with avalanche amplification mechanism
- ➤ Higher timing resolution
- \geq 26 ps timing resolution (study for ATLAS group)
- Particle ID
- How LGAD contributes to time resolution and • particle identification when it is used as part of ECAL
- Position and number of LGAD in ECAL •

30

40

Alveolar

structure

Gain

60

50

Simulation and time information

Yoke/ Muon

Coil HCAL

ECAL TPC

Vertex

IP

Data

- \succ single particle PDG=211 (π^+) and PDG=321(K^+)
- ILD detector simulation
- ➢ ILC soft : v01-19-04
- ➤ Energy : 1 , 2 , 5 , 10 GeV
- ➤ 10000 event
- > mcTime <12 ns (mcTime :Time from IP to ECAL hit)</pre>

ILD

b- 8°00

Yoke/ Muon

 \succ Hit the barrel part of ECAL

Time

- \succ Time of each hit
- Error due to sensor time resolution are not considered
- \succ The distance from the IP to ECAL is about $1.8~{
 m m} \sim$
- \rightarrow The time from IP to ECAL is about $6.1~\mathrm{ns}\sim$
- The result of time distribution is reasonable

Calculation method of mass

 \rightarrow Calculate the particle mass for each event by averaging the masses of multiple hits in one event

Result π^{\pm} : mass [each hit]

6

Result K^{\pm} : mass [each hit]

ILCQ 2020/11/4

Mass of π^+ and K^+

• π^+ and K⁺ can be identified up to 5 GeV.

(However, error due to sensor timing resolution are not considered.)

π^+ Mass : each hit and event

• I can't see the expected improvement in distribution for each event.

K^+ Mass : each hit and event

• I can't see the expected improvement in distribution for each event.

Summary

- LGAD has higher timing resolution and improve resolution of ECAL
- Calculate mass of particle with single particle data of π^+ and K^+ for each event
- Calculate for each hit \rightarrow each event : However, I can't see the expected improvement in distribution for each event.

Next step

- Simulate the difference in resolution and particle ID by combining LGAD with ECAL
- Make LGAD prototype and simulation