# Analysis of XFEL operation experience and ILC implications



Nick Walker

(on behalf of the XFEL SRF LINAC team)

DESY

DESY

DESY ILC Project Meeting 18th December, 2020



|                          |      | XFEL               |                    |                         | ILC                |
|--------------------------|------|--------------------|--------------------|-------------------------|--------------------|
|                          |      | Design             | Demonstrated       | Routine                 |                    |
| Beam energy              | GeV  | 8—17.5             | <i>≯</i> 17.6      | 11.5   <b>14</b>   16.5 | 125                |
| Machine rep rate         | Hz   | 10                 | 10                 | 10                      | 5                  |
| $N_{bunch}$              |      | 2,700              | >1,300             | 600—1,200               | 1,300 (2,600)      |
| Beam rep rate            | MHz  | <b>≯</b> 4.5       | 4.5                | 1.125—4.5               | 1.8 (2.7)          |
| Bunch charge             | pC   | 20—1,000           | 100—500            | 250                     | 3,200              |
| Beam Current (avg)       | mA   | ≤ 5                | < 2.25             | 0.6—1.3                 | 5.8 (8.6)          |
| Bunch length             | fs   | 2-180              | 20, 50             | 20                      | 1,000              |
| Beam power               | kW   | 500                | 80                 | 40                      | 6,000              |
| Energy stability         |      | < 10 <sup>-4</sup> | < 10 <sup>-4</sup> | < 10 <sup>-4</sup>      | < 10 <sup>-4</sup> |
| Timing stability         | fs   |                    | 7                  | < 20                    | < 100              |
| Average E <sub>acc</sub> | MV/m | 23.6               | 24.4               | 22.4                    | 31.5 (35?)         |
| $Q_0$                    |      | 1010               | ~1010              | ~1010                   | 5×10 <sup>9</sup>  |
| $\gamma \epsilon_y$      | μm   | 1                  | 1.4                | 1.4                     | 0.035              |





|                          |            | XFEL               |                    |                         | ILC                |
|--------------------------|------------|--------------------|--------------------|-------------------------|--------------------|
|                          |            | Design             | Demonstrated       | Routine                 |                    |
| Beam energy              | GeV        | 8—17.5             | <b>≯</b> 17.6      | 11.5   <b>14</b>   16.5 | 125                |
| Machine rep rate         | Hz         | 10                 | 10                 | 10                      | 5                  |
| $N_{bunch}$              |            | 2,700              | >1,300             | 600—1,200               | 1,300 (2,600)      |
| Beam rep rate            | MHz        | <b>₹</b> 4.5       | 4.5                | 1.125—4.5               | 1.8 (2.7)          |
| Bunch charge             | pC         | 20—1,000           | 100—500            | 250                     | 3,200              |
| Beam Current (avg)       | mA         | ≤ 5                | < 2.25             | 0.6—1.3                 | 5.8 (8.6)          |
| Bunch length             | fs         | 2-180              | 20, 50             | 20                      | 1,000              |
| Beam power               | kW         | 500                | 80                 | 40                      | 6,000              |
| Energy stability         |            | < 10 <sup>-4</sup> | < 10 <sup>-4</sup> | < 10 <sup>-4</sup>      | < 10 <sup>-4</sup> |
| Timing stability         | fs         |                    | 7                  | < 20                    | < 100              |
| Average E <sub>acc</sub> | MV/m       | 23.6               | 24.4               | 22.4                    | 31.5 (35?)         |
| $Q_0$                    |            | 10 <sup>10</sup>   | ~10 <sup>10</sup>  | ~1010                   | 5×10 <sup>9</sup>  |
| γε <sub>y</sub>          | μ <b>m</b> | 1                  | 1.4                | 1.4                     | 0.035              |







|                          |            | XFEL               |                    |                         | ILC                |
|--------------------------|------------|--------------------|--------------------|-------------------------|--------------------|
|                          |            | Design             | Demonstrated       | Routine                 |                    |
| Beam energy              | GeV        | 8—17.5             | <i>≯</i> 17.6      | 11.5   <b>14</b>   16.5 | 125                |
| Machine rep rate         | Hz         | 10                 | 10                 | 10                      | 5                  |
| $N_{bunch}$              |            | 2,700              | >1,300             | 600—1,200               | 1,300 (2,600)      |
| Beam rep rate            | MHz        | <i>7</i> 4.5       | 4.5                | 1.125—4.5               | 1.8 (2.7)          |
| Bunch charge             | pC         | 20—1,000           | 100—500            | 250                     | 3,200              |
| Beam Current (avg)       | mA         | ≤ 5                | < 2.25             | 0.6—1.3                 | 5.8 (8.6)          |
| Bunch length             | fs         | 2-180              | 20, 50             | 20                      | 1,000              |
| Beam power               | kW         | 500                | 80                 | 40                      | 6,000              |
| Energy stability         |            | < 10 <sup>-4</sup> | < 10 <sup>-4</sup> | < 10 <sup>-4</sup>      | < 10 <sup>-4</sup> |
| Timing stability         | fs         |                    | 7                  | < 20                    | < 100              |
| Average E <sub>acc</sub> | MV/m       | 23.6               | 24.4               | 22.4                    | 31.5 (35?)         |
| $Q_0$                    |            | 10 <sup>10</sup>   | ~10 <sup>10</sup>  | ~10 <sup>10</sup>       | 5×10 <sup>9</sup>  |
| γε <sub>y</sub>          | μ <b>m</b> | 1                  | 1.4                | 1.4                     | 0.035              |





|                          |            | XFEL               |                    |                         | ILC                |
|--------------------------|------------|--------------------|--------------------|-------------------------|--------------------|
|                          |            | Design             | Demonstrated       | Routine                 |                    |
| Beam energy              | GeV        | 8—17.5             | <b>≯</b> 17.6      | 11.5   <b>14</b>   16.5 | 125                |
| Machine rep rate         | Hz         | 10                 | 10                 | 10                      | 5                  |
| $N_{bunch}$              |            | 2,700              | >1,300             | 600—1,200               | 1,300 (2,600)      |
| Beam rep rate            | MHz        | <b>₹</b> 4.5       | 4.5                | 1.125—4.5               | 1.8 (2.7)          |
| Bunch charge             | pC         | 20—1,000           | 100—500            | 250                     | 3,200              |
| Beam Current (avg)       | mA         | ≤ 5                | < 2.25             | 0.6—1.3                 | 5.8 (8.6)          |
| Bunch length             | fs         | 2-180              | 20, 50             | 20                      | 1,000              |
| Beam power               | kW         | 500                | 80                 | 40                      | 6,000              |
| Energy stability         |            | < 10 <sup>-4</sup> | < 10 <sup>-4</sup> | < 10 <sup>-4</sup>      | < 10 <sup>-4</sup> |
| Timing stability         | fs         |                    | 7                  | < 20                    | < 100              |
| Average E <sub>acc</sub> | MV/m       | 23.6               | 24.4               | 22.4                    | 31.5 (35?)         |
| $Q_0$                    |            | 10 <sup>10</sup>   | ~10 <sup>10</sup>  | ~1010                   | 5×10 <sup>9</sup>  |
| $\gamma \epsilon_y$      | μ <b>m</b> | 1                  | 1.4                | 1.4                     | 0.035              |



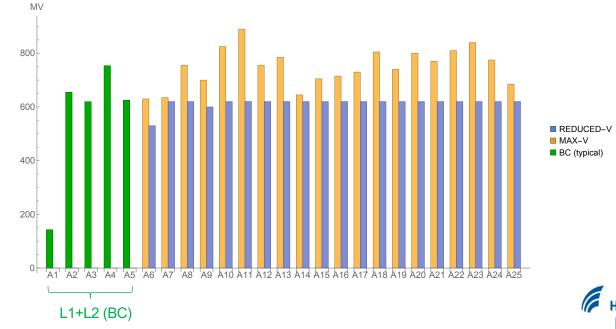


|                          |            | XFEL               |                    |                         | ILC                |
|--------------------------|------------|--------------------|--------------------|-------------------------|--------------------|
|                          |            | Design             | Demonstrated       | Routine                 |                    |
| Beam energy              | GeV        | 8—17.5             | <b>≯</b> 17.6      | 11.5   <b>14</b>   16.5 | 125                |
| Machine rep rate         | Hz         | 10                 | 10                 | 10                      | 5                  |
| $N_{bunch}$              |            | 2,700              | >1,300             | 600—1,200               | 1,300 (2,600)      |
| Beam rep rate            | MHz        | <b>7</b> 4.5       | 4.5                | 1.125—4.5               | 1.8 (2.7)          |
| Bunch charge             | pC         | 20—1,000           | 100—500            | 250                     | 3,200              |
| Beam Current (avg)       | mA         | ≤ 5                | < 2.25             | 0.6—1.3                 | 5.8 (8.6)          |
| Bunch length             | fs         | 2-180              | 20, 50             | 20                      | 1,000              |
| Beam power               | kW         | 500                | 80                 | 40                      | 6,000              |
| Energy stability         |            | < 10 <sup>-4</sup> | < 10 <sup>-4</sup> | < 10 <sup>-4</sup>      | < 10 <sup>-4</sup> |
| Timing stability         | fs         |                    | 7                  | < 20                    | < 100              |
| Average E <sub>acc</sub> | MV/m       | 23.6               | 24.4               | 22.4                    | 31.5 (35?)         |
| $Q_0$                    |            | 10 <sup>10</sup>   | ~1010              | ~1010                   | 5×10 <sup>9</sup>  |
| $\gamma \epsilon_y$      | μ <b>m</b> | 1                  | 1.4                | 1.4                     | 0.035              |







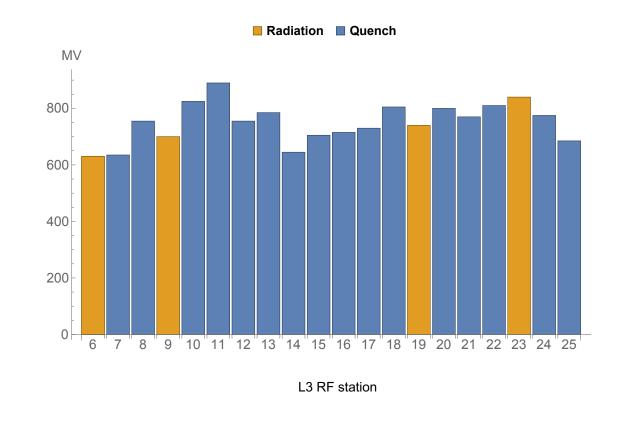



## **XFEL LINAC Voltage Configurations**

|                             | Energy<br>(GeV) | Config                          | Off-crest<br>phase | Margin to<br>on crest<br>(MV) | Recover<br>by phase<br>alone |
|-----------------------------|-----------------|---------------------------------|--------------------|-------------------------------|------------------------------|
| Typical user run            | 14.5            | Reduced-voltage configuration   | 20°                | 690                           | 1 station                    |
| Low-energy user run         | 11.5            | Reduced-voltage configuration   | 44°                | 3190                          | >1 station                   |
| High-energy user run        | 16.5            | High-voltage configuration      | 21°                | 925                           | 1 station                    |
| Maximum demonstrated energy | 17.6            | High-voltage config (no margin) | on-crest           |                               |                              |

Reduced-V is a High Reliability & Availability mode

- power de-rated
- reduced radiation (dark current)



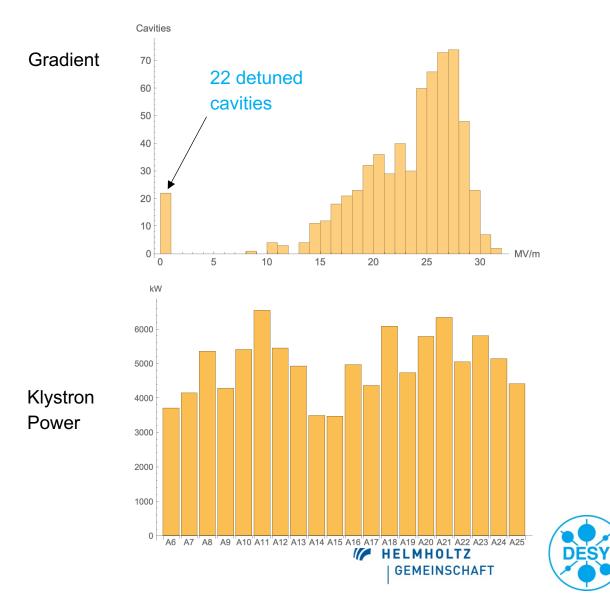





#### **Maximum Energy Performance**

- Maximum station voltage limited by
  - Quench (generally one limiting cavity ~0.5 MV/m margin)
  - Excessive radiation due to dark current
  - 22 / 640 (L3) cavities operationally detuned
- With all L3 stations on phase → 17.6 GeV
  - Bunch compressor (L2+L3) at 2.4 GeV (nominal)
  - No operational overhead (longer trip recovery)
  - Not offered as a user run mode (yet!)
  - 16.5 GeV mode allows for one L3 station to fail.



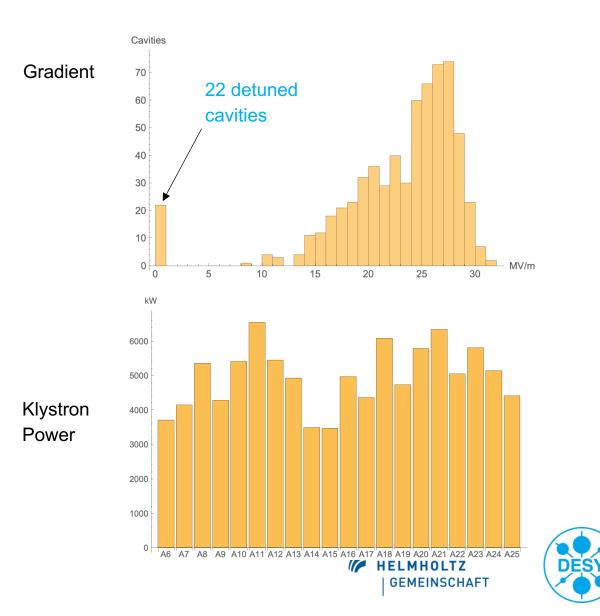

ILC: 1 GV per RF station (on average)





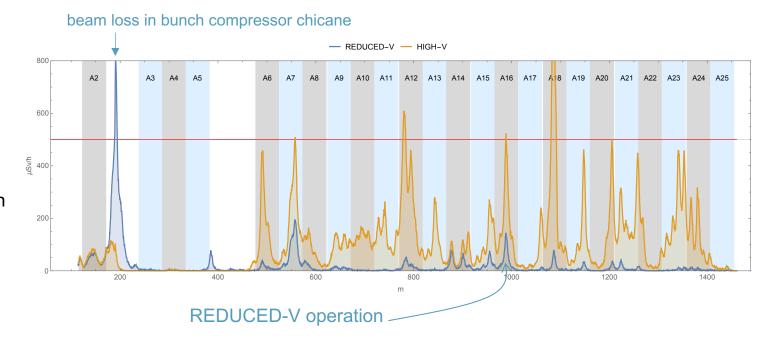
## RF performance at HIGH-V (L3)

- Average gradient
  - 24.4 ±4 MV/m
    - ► Design goal 23.6 MV/m
    - ► 23.0 MV/m including detuned cavities




#### RF performance at HIGH-V (L3)

- Average gradient
  - 24.4 ±4 MV/m
    - ► Design goal 23.6 MV/m
    - ► 23.0 MV/m including detuned cavities

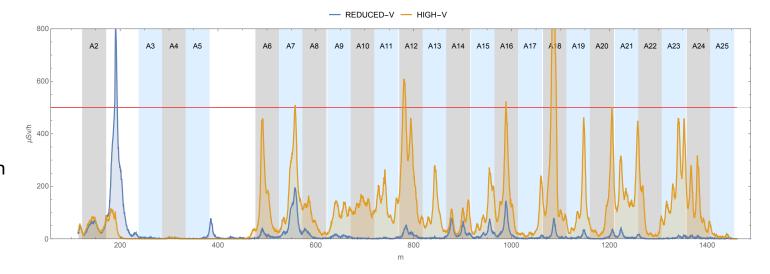

During recent 16.5 GeV run: 23.4 MV/m (22.6 MV/m)

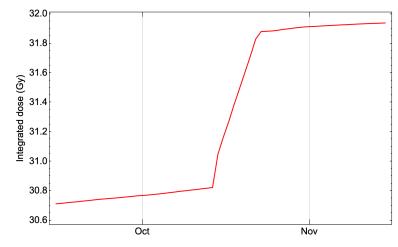
Drop will be studied in Jan start up



#### **Radiation (Dark Current)**

- All RF stations (modules) generate dark current to some degree
  - voltage dependent
- We routinely monitor radiation levels during operation
  - Distributed "real time" dosimetry
    - ► Continuous (rolling averaged)
    - Gamma radiation
    - Outside and inside electronics racks
  - Tunnel radiation profiles
    - ► Via our roving robot MARWIN
    - As needed (aiming at once per week)
    - ► Gamma and neutron radiation
- MARWIN neutron signal is used to define max operation voltage
  - ≤ 500 uSv/h
  - A6, A9, A19 and A23






#### **Radiation (Dark Current)**

- All RF stations (modules) generate dark current to some degree
  - voltage dependent
- We routinely monitor radiation levels during operation
  - Distributed "real time" dosimetry
    - ► Continuous (integrated, rolling averaged)
    - Gamma radiation
    - Outside and inside electronics racks
  - Tunnel radiation profiles
    - ▶ Via our roving robot MARWIN
    - ► As needed (aiming at once per week)
    - ► Gamma and neutron radiation
- MARWIN neutron signal is used to define max operation voltage
  - ≤ 500 uSv/h
  - A6, A9, A19 and A23



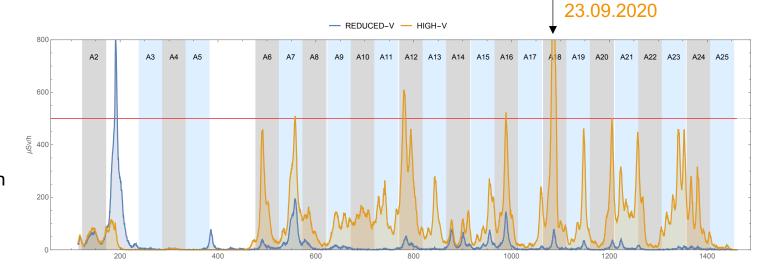


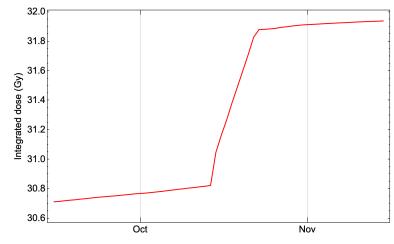
#### **RADCON** monitors

Example of FE onset in **A24** (14.10.2019)

(→ one cavity removed from ops)







A18.M3.C4

detuned

## **Radiation (Dark Current)**

- All RF stations (modules) generate dark current to some degree
  - voltage dependent
- We routinely monitor radiation levels during operation
  - Distributed "real time" dosimetry
    - ► Continuous (integrated, rolling averaged)
    - Gamma radiation
    - Outside and inside electronics racks
  - Tunnel radiation profiles
    - ▶ Via our roving robot MARWIN
    - ► As needed (aiming at once per week)
    - ▶ Gamma and neutron radiation
- MARWIN neutron signal is used to define max operation voltage
  - ≤ 500 uSv/h
  - A6, A9, A19 and A23





#### **RADCON** monitors

Example of FE onset in **A24** (14.10.2019) (→ one cavity removed from ops)



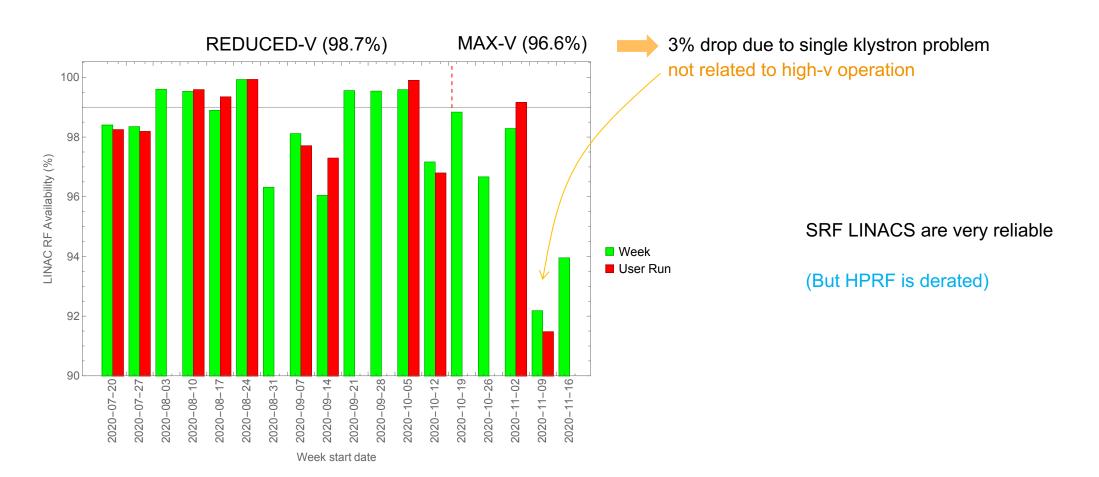


# **Detuned cavities (23)**

Degraded during operation

(Also A6  $\rightarrow$  reduced voltage)

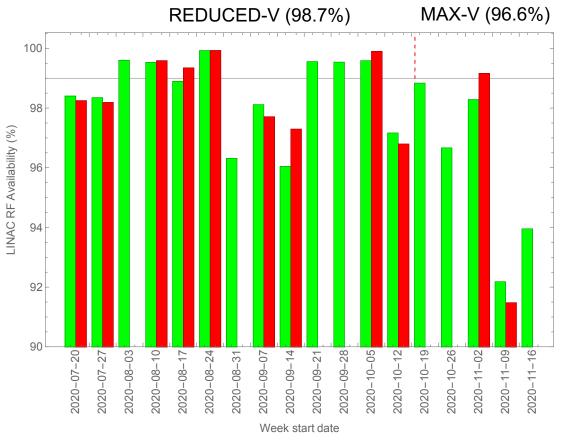
| Station | Count | Cavity | Reason                     | Date detuned | Comment                                         |
|---------|-------|--------|----------------------------|--------------|-------------------------------------------------|
| A4      | 1     | M4.C4  | Coupler (T70K)             |              |                                                 |
| A6      | 3     | M3.C1  | High FE/X-Ray              |              | AMTF                                            |
|         |       | M3.C5  | MGTF (quench)              |              |                                                 |
|         |       | M3.C6  | MGTF (quench)              |              |                                                 |
| A7      | 3     | M1.C7  | MGTF (quench?)             | 21.11.2018   | Operationally degradation observed on 02.11.201 |
|         |       | M2.C3  | MGTF (quench)              |              |                                                 |
|         |       | M2.C7  | High FE/X-Ray              |              | AMTF                                            |
| A8      | 3     | M4.C1  | MGTF (quench)              |              |                                                 |
|         |       | M4.C4  | MGTF (quench)              |              |                                                 |
|         |       | M4.C5  | MGTF (quench)              |              |                                                 |
| A10     | 1     | M1.C3  | Low-field quench           |              | AMTF                                            |
| A12     | 3     | M2.C2  | MGTF (quench)              |              |                                                 |
|         |       | M3.C8  | MGTF (quench)              |              |                                                 |
|         |       | M4.C1  | Coupler (T70K)             |              |                                                 |
| A14     | 1     | M3.C5  | Excessive cryogenic losses |              |                                                 |
| A16     | 1     | M2.C1  | Coupler (T70K)             |              |                                                 |
| A18     | 1     | M4.C4  | AMTF WDS spec error        |              |                                                 |
|         | 2     | M3.C4  | High FE/X-Ray              | 23.09.2020   | MARWIN neutron >500uSv/h                        |
| A20     | 1     | M4.C1  | Coupler (T70K)             |              |                                                 |
| A21     | 2     | M3.C4  | Low-field quench           |              | AMTF                                            |
|         |       | M4.C2  | MGTF (quench)              |              |                                                 |
| A22     | 1     | M4.C3  | High FE/X-Ray              | 14.01.2020   | MARWIN neutron >500uSv/h                        |
| A24     | 1     | M2.C7  | High FE/X-Ray              | 14.10.2019   | FE event (activation)                           |
| Total   | 23    |        |                            |              |                                                 |

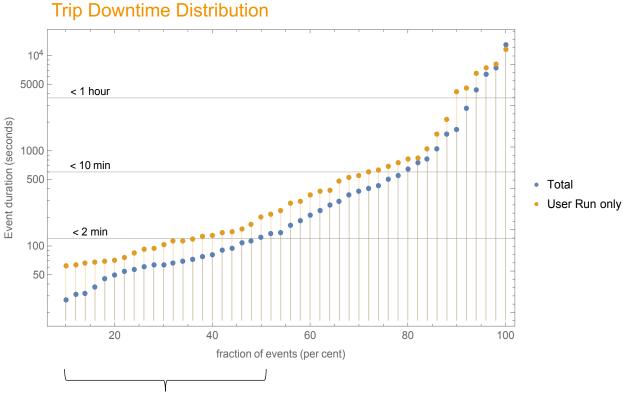










#### **RF Systems Availability**





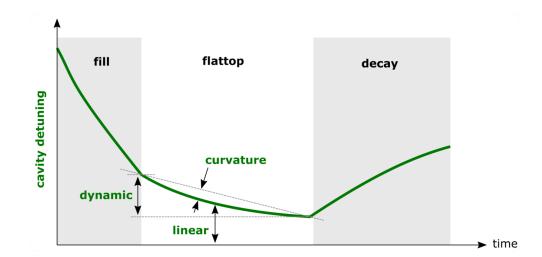



#### **RF Systems Availability**

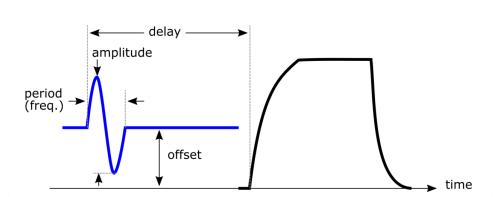












#### **Piezo Systems**

#### A high-visibility addition to the LLRF systems

- Piezo systems dynamically maintain individual cavity "on resonance" during the beam pulse (RF flat top)
  - Lorentz force detuning (LFD)
- Track slow frequency drifts
- Direct RF benefits
  - "flat" cavity voltage across flat top
    - ► stable operation close to quench limits
  - Reduction of forward power
  - Easier tuning and trip recovery
    - ► related to first point
- Now operational on all 776 cavities



RF pulse



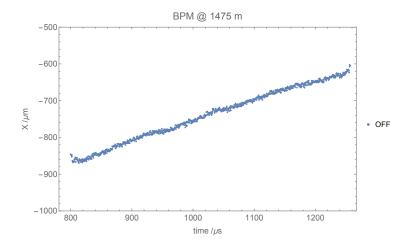
piezo stimulus







#### 18


## Piezos – impact on beam dynamics An added benefit

Transverse kicks from cavity HPC and misalignments (tilts)

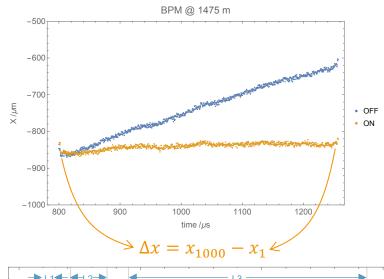
RF Station: 
$$\frac{d}{dt} \sum_{i=1}^{32} \tilde{V}_i = 0$$
 LLRF VSUM contro

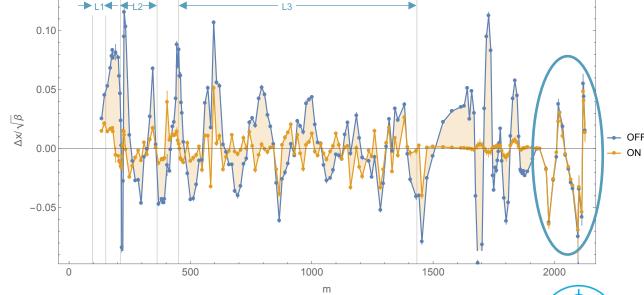
But 
$$\frac{d}{dt}\tilde{V}_i \neq 0$$

⇒ time-dependent transverse kicks along bunch train






#### Piezos – impact on beam dynamics An added benefit


Transverse kicks from cavity HPC and misalignments (tilts)

RF Station: 
$$\frac{d}{dt} \sum_{i=1}^{32} \tilde{V}_i = 0$$
 LLRF VSUM control

But 
$$\frac{d}{dt}\tilde{V}_i \neq 0$$

⇒ time-dependent transverse kicks along bunch train







#### **Quick summary**

- XFEL has successfully tested ILC tech.
- But many parameters remain elusive
  - Elephant in the room: average accelerating gradient
- Availability RF is now >90 (>99)
  - Highly automated systems
  - And the hard work and diligence of many people.





#### **Quick summary**

- XFEL has successfully tested ILC tech.
- But many parameters remain elusive
  - Elephant in the room: average accelerating gradient
- Availability RF is now >90 (>99)
  - Highly automated systems
  - And the hard work and diligence of many people.

To answer the remaining ILC questions, we need to build it



Thanks for your attention



