ILD Top/HF group meeting 11/13/20

Yuichi Okugawa

- **1. Brief introduction to single top analysis.**
- 2. Single Top Analysis
- 3. Selection
- 4. Conclusion

 Polar angle distribution of top quark for all reconstructed events

 Polar angle distribution of top quark only using vtx x vtx comparison.

 Polar angle distribution of top quark for all reconstructed events

Background?

- Mis-combination of b and W?
- Single Top Background?

 Polar angle distribution of top quark only using vtx x vtx comparison.

 Polar angle distribution of top quark for all reconstructed events

Background?

- Mis-combination of b and W?
- Single Top Background?

- Source of systemic error
- Polar angle distribution of top quark only using vtx x vtx comparison.

- Two processes are difficult to be distinguished. •
 - Share the same final states. $(bbq\bar{q}'\ell\bar{\nu})$
 - Events are mixed in the parton level.

MC Generated Process

- MC generates events $e^+e^- \rightarrow b\bar{b}q\bar{q}'\ell\nu$
 - $b\bar{b}$ comes from e^+e^- before hadronization thus FSR would not be included.
 - Processor would then look for W^+W^- . Sometimes these already decay in 2 fermion pairs ($q\bar{q}'\ell\nu$). In this case, it'll find combination that fit W charges.
 - If there's FSR, there should be extra particle in this list. $(\gamma \text{ or } g)$

Kaon1

 This analysis considered events to correspond to top quark pair production when the following criteria is satisfied for both of W and *b* pairs.

$$|m_{Wb} - m_t^{MC}| < 15 \text{ GeV}$$

If only one of these pair meet this criterium, the events are labeled as single top quark event.

Fuster, J 2015 1434-6052

8

2. Single Top Analysis (ILD 10/02)

b-jet Energy Distribution

- b-jet energy distribution of hadronic top for all reconstructed events.
- black: $\cos \theta < -0.9$ && singleTop tag

- b-jet energy distribution of hadronic top only using vtx x vtx comparison.
- ▶ black: method1 && singleTop tag
 ↑
 no cos θ < -0.9

2. Single Top Analysis (ILD 10/02)

b-jet Energy Distribution

- b-jet energy distribution of hadronic top for all reconstructed events.
- black: $\cos \theta < -0.9$ && singleTop tag

- b-jet energy distribution of hadronic top only using vtx x vtx comparison.
- black: method1 && singleTop tag
 ↑
 no cos θ < − 0.9

What are we interested?

- Key parameters
 - $\cos\theta < -0.9$
 - Single Top Tag (based on Gen info)
 - Usage of Method1 (vtx x vtx)

Number of Events:

1.51585e+06 All Reco Events: Single Top Tagged Events: 183956

Number of Events:

All Reco Events:

Method1 Used Events:

1.51585e+06 107715

Fit func: Log

Norma	
-------	--

4. Conclusion

$t\bar{t}$ Pair Production \bullet

- processed.
- **Single Top Analysis**
 - events on combined generated mass of b and W.
 - Generated single top events consist 12.5% of overall events.
 - Vtx x Vtx comparison scheme seems to eliminate such events by <u>filtering out the soft b-jets</u>.
 - which results in this 'filtering' effect.
 - charge measurement could be an identifier to estimate such events.

• $t\bar{t}$ production at the ILC at $\sqrt{s} = 500$ GeV for fully-left handed beam polarization using 900,000 events was

Single top problem emerged as a source of systematic error, thus applied a selection for single top generated

It is possible that at the detector level, vertex detector fail to reconstruct tracks associated to b-jets,

Differentiating single top process is perplexing when it comes down to reconstruction level, yet vertex

Backup

Generated Lep/Had Top Mass

 Events clusters around 174 GeV region yet still huge amount of off-shell events.

MC Top mass

Gen Top mass for the entire events

Gen Top mass after single Top ID

Reco Top mass

Reco Top mass for the entire events (Top1=Had, Top2=Lep)

Reco Top mass after single Top ID

35 30 25 15 10

Reco Top mass (zoomed)

Reco Top mass for the entire events (Top1=Had, Top2=Lep)

Reco Top mass after single Top ID

SingleTop && Cos0.9 && Method1

Fit Parameters (Crystalball)

NAME	VALUE	ERROR
Constant	4.96431E-02	2.25619E-03
Mean	7.16641E+01	1.76326E+00
Sigma	2.6926E+01	1.62229E+00
Alpha	1.54754E+00	7.3487E-01
Ν	-1.12659E+05	4.24264E-01

Total Events: 1.51585e+06 Selected: 721

SingleTop && Cos0.9

Fit Parameters (Crystalball)

NAME	VALUE	ERROR
Constant	5.06353E-02	5.50782E-04
Mean	6.7238E+01	5.53692E-01
Sigma	2.87102E+01	5.70428E-01
Alpha	1.51941E+00	3.31116E-03
Ν	1.53473E+00	4.24264E-01

Total Events:1.51585e+06Selected:12185

SingleTop

Fit Parameters (Double Gaus)

NAME	VALUE	ERROR
Const1	3.30635E-02	6.16687E-04
Mean1	1.0408E+02	1.98225E+00
Sigma1	3.24949E+01	2.1929E+00
Const2	1.89943E-02	2.70058E-03
Mean2	5.7729E+01	8.85771E-01
Sigma2	1.97371E+01	8.33313E-01

 Total Events:
 1.51585e+06

 Selected:
 183956

Cos0.9

Fit Parameters (Log Normal)

NAME	VALUE	ERROR
p0	4.132E+00	6.76613E-02
p1	8.08274E+01	8.50019E-01
p2	1.65201E+00	1.15857E-02

Total Events:1.51585e+06Selected:45868

Max = 62.823 GeV

Method1

Fit Parameters (Triple Gaus)

NAME	VALUE	ERROR
Const1	1.01315E-02	2.57171E-03
Mean1	5.08603E+01	1.94586E+00
Sigma1	1.37695E+01	1.40127E+00
Const2	2.56534E-02	5.36272E-03
Mean2	8.14914E+01	5.19481E+00
Sigma2	2.27535E+01	1.87701E+00
Const3	3.08501E-02	2.37975E-03
Mean3	1.31256E+02	5.68089E+00
Sigma3	2.99661E+01	4.16266E+00

Total Events: 1.51585e+06 Selected: 107715

Max = 96.5769 GeV

All

Fit Parameters (Triple Gaus)

NAME	VALUE	ERROR
Const1	2.32525E-03	2.55238E-04
Mean1	4.6308E+01	4.37737E-01
Sigma1	1.31458E+01	6.46767E-01
Const2	5.20107E-03	3.89298E-04
Mean2	7.28125E+01	1.6434E+00
Sigma2	2.36618E+01	6.96797E-01
Const3	7.52981E-03	1.56847E-04
Mean3	1.24267E+02	1.85224E+00
Sigma3	3.5185E+01	1.28613E+00

Total Events: 1.51585e+06

Max = 91.6638 GeV