"Technical Preparation" of dumps

Input for ILC-IDT from the WG2-DR/BDS/Dump subgroup

2020/11/25 Nobuhiro Terunuma, KEK

Accelerator activities at ILC Pre-lab phase

Technical preparations /performance & cost R&D [shared across regions]

- SRF performance R&D, quality testing of a large number of cavities (~100), fabrication and shipping of cryomodules from North America and Europe (for validating shipping)
- Positron source final design and verification
- Nanobeams (ATF3 and related): Interaction region: beam focus, control; and Damping ring: fast kicker, feedback
- Technical preparation

- Beam dump: system design, beam window, cooling water circulation
- Other technical developments considered performance critical

Final technical design and documentation [central project office in Japan and possibly regional project offices]

- Engineering design and documentation, WBS
- Cost confirmation/estimates, tender and purchase preparation, transport planning, mass-production planning and QA plans, schedule follow up and construction schedule preparation
- Site planning including environmental studies, CE, safety and infrastructure (see below for details)

Engineering Design Report (EDR)

- Review office
- Resource follow up and planning (including human resources)

Preparation and planning of deliverables [distributed across regions, liaising with the central project office and/or its satellites]

- Prototyping and qualification in local industries and laboratories, from SRF production lines to individual WBS items
- Local infrastructure development including preparation for the construction phase (including Hub.Lab)

Planning and preparation of Hub lab.

Financial follow up, planning and strategies for these activities

Civil engineering, local infrastructure and site [host country assisted by selected partners]

- · Engineering design including cost confirmation/estimate
- Environmental impact assessment and land access
- Specification update of the underground areas including the experimental hall
- Specification update for the surface building for technical scientific and administrative needs

Civil engineering

Documents for the "Technical Preparation"

- Listing the *remaining topics which should be done in the ILC preparatory phase*.
- Fill the *template* in Nov. and Dec.
- Complete the draft in the IDT-WG2 DR/BDS/Dump meeting on 12/22.
- Draft will be discussed in the IDT-EB meeting on 12/25.
- Documents will be used for the budget requests of each partner. (Feb. 2021~)

WG2 Charges

- C1: Technical preparation (remaining topics) at Pre-lab
- C2: Preparation for mass production at Pre-lab
 - It is out of the scope for beam dump ... max 9 units for 60kW tune-up dump
- C3: Possible schedule at Pre-lab
- C4: International sharing candidates of these activities

Template of "Technical Preparation": example of SCRF mass-production

and for a similar accelerator currently under construction for LCLS-II in the US. In both cases, after

cryomodule assembly, modules were transported on the ground and installed in the tunnel with no

major issues caused by the transportation. However, marine/ship transport of cryomodules between

two different regions across a sea, and the performance test after transport are yet to be carried out.

This will be done as a part of crucial technical preparation in the main preparatory phase.

(Add some figures to explain visually) Before mass production starts, tuner design should be fixed!! America **Supplemental** Figures and tables TESLA/II TESLA Cavity shape Lenath Fixed L=1,247 m Beam pipe flange Fixed Suspension pitch Fixed Coupler flange (cold end) Coupler pitch Fixed He -in-line joint Fixed 12.562 m (flange to flance, to be checked)

"Technical Preparation" for dumps, drafts will be prepared by KEK

■ Main Dump (17 MW)

- Design and prototyping of window sealing and remote exchange
- Robustness test of window (pressure, beam??)
- Engineering design water flow system
- Design for countermeasure of failures

■ Photon dump (300kW)

System design for operation and maintenance

Dump	Max. Power	Num	Examples (design)	
Tune-up	60 kW	9	LCLS-II (120kW)	If rastering → 250kW
Tune-up ML	400 kW	2	XFEL (300kW)	
Undulator photon	300 kW	1	-none-	Conceptual designs (graphite at 2km, water)
Main dump	17 MW (1TeV)	2	SLAC (2.2MW), JLAB (1MW)	Water dump; 0.75, 0.9MW operated
Undulator 5+5Hz	8 MW	1	Same as main dump	Same as main dump

Please send me your comments and suggestions!

Thank you.

C1: Technical preparation (remaining topics) at Pre-lab

- Specific designs what we need to proceed
 - 300 kW photon dump
 - 17 MW main dump
 - Water flow system (include vortex flow in dump vessel)
 - Window sealing and remote exchange (30cm in diam., 10 atm activated water)
 - Countermeasure for failure; e.g., window, water system,...
 - Civil and utility design under the condition of candidate site
- Robustness test of window for 17 MW main dump
 - Prototyping of window and its attachment
 - Beam test of window material if possible

C3: Possible schedule at Pre-lab

- A convincing main dump design with maintenance and failure scenarios should be prepared in early Pre-lab phase.
- SCJ and MEXT panel show concerns about the safety on the main beam dump. Radioactive product is a concern by people especially in candidate site.
- The main dump window needs to be studied well, but the concern about it is not like a showstopper, but an engineering issue.
- **Prototyping of the window system** is expected in Pre-lab phase, for a better maintenance design.

C4: International sharing candidates of Pre-lab activities

- Possible collaboration on the engineering design of dump system
 - SLAC, JLAB ... experience of the 1MW water dump
 - CERN, DESY ... High power dumps
 - Spain ... ESS Target (5MW), IFMIF dump (1MW)

- Study of the window material
 - Industry/supplier
 - possibly with RaDIATE collaboration for the high-power targets

Activity on ILC main dump

- Until the TDR, overseas researchers contributed and summarized the base design.
- After the TDR, especially in recent years, KEK has resumed the dump study to fulfill the responsibility for radiation safety by host country.
 - Member: staff of ILC accelerator and Radiation Safety
 - Studying the radiation safety over the ILC
 - Visited the dump sections at CERN, SLAC and JLAB
 - Now we start the design work with companies for the sub-system
 - Water flow system
 - Window system (sealing and remote exchange)
 - Civil and utility design under the condition of candidate site
- Willing to re-organize the international team

IDT-WG2 organization

Bi-weekly *Tuesday* meeting: Sep.22, Oct. 6, 20,...

IDT WG2
Shin Michizono (Chair)
Benno List (Deputy)

https://agenda.linearcollider.org/category/256/

	Bi-weekly Tuesday			
SRF	Oct.13,27,			

DR/BDS/Dump	Bi-weekly Tuesda
DR/ BD3/ Dullip	Oct.13,27,

Yasuchika Yamamoto	KEK	Toshiyuki Okugi	KEK
Nuria Catalan	CERN	Karsten Buesser	DESY
Dimitri Delikaris	CERN	Philip Burrows	U. Oxford
Rongli Geng	JLAB	Angeles Faus-Golfe	LAL
Hitoshi Hayano	KEK	Jenny List	DESY
Bob Laxdal	Triumf	Thomas Markiewicz	SLAC
Matthias Liepe	Cornell	Brett Parker	BNL
Peter McIntosh	STFC	David L. Rubin	Cornell
Olivier Napoly	CEA	Nikolay Solyak	FANL
Sam Posen	FNAL	Luis Garcia Tabares	CIEMAT
Robert Rimmer	JLAB	Nobuhiro Terunuma	KEK
Marc C. Ross	SLAC	Glen White	SLAC
Akira Yamamoto	KFK	Kaoru Yokova	KFK

Charges of Sub-groups

- Discuss and coordinate the topics for
 - technical preparation (remaining topics) at Pre-lab
 - preparation for mass production at Pre-lab
 - possible schedule at Pre-lab
 - international sharing candidates of these activities
 - Report to the IDT-WG2

All members belong to some sub-group(s).

Sources		eekly Mond 12,26,	day
Kaoru Yokoy		KEK	
Jim Clarke		STFC	
Steffen Doebert		CERN	
Joe Grames		JLAB	
Hitoshi Haya	no	KEK	
Masao Kuriki		U. Hiroshima	
Benno List		DESY	
Gudrid Moortgat- Pick		U. Hamburg	

Civil	engine	ering

Nobuhiro Terunuma	KEK
John Andrew Osborne	CERN
Tomoyuki Sanuki	U. Tohoku

Note: Summer to Winter time transition will be specially considered at next sub-group meeting.

1pm (->2pm) UTC (6am US Pacific, 8am US Central, 2pm U.K., 3pm Geneva, 10pm (->11pm) Japan)

Assumed Pre-lab timeline

For Engineering design

1st year: Work on TDR-based cost-estimate confirmation, started by an international team centered on the Pre-lab.

2nd year: Complete the cost-estimate confirmation, and an internal review in the latter half of the 2nd year.

The review also reports on the progress of technical issues during the preparation period.

3rd year: Conduct an external review and completed scrutiny of costs and risks.

Complete the draft of Engineering Design Report (EDR).

4th year: Publish EDR (in first half yr), report progress on technical issues, and prepare each large bid.

For technical preparation (example of SCRF and positron)

1st year: Extend SCRF cost reduction R&D, Start a pre-series SCRF cavities production preparing for industrialization Continue positron survey

2nd year: Complete SCRF cost-reduction R&D, and extend the work to assemble the cavities with cryomodule (CM), Select positron scheme

3rd year: Demonstrate "Global CM transfer, aiming at HPG legal-process, shipment, and SRF QA test after transport Mature Lab. planning and preparation Prototyping of critical items (such as positron target)

4th year: Evaluate CM performance based on CM shipment, and prepare for Hub Lab. functioning Progress prototyping of critical items (such as positron target)