Permanent Magnets for the ILC Damping Ring

BNL capabilities

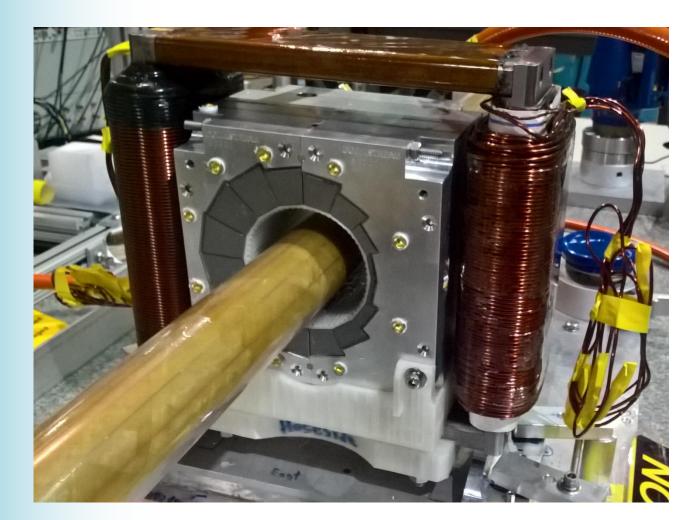
BNL Capabilities

- Magnet design, simulation
- Construction of prototypes
- Magnet measurement (R&D and production)

 BNL harmonic rotating coil with 10⁻⁵ repeatability
 NSLS-II magnet diagnostics (vibrating wire etc.)
- Magnet tuning/shimming

 Used in the production run of 216 permanent magnets for the CBETA multi-turn ERL

Magnet Parameters Outline


- Fields, gradients and apertures
- Field quality, good field region
- Field adjustability range and how often
- Field stability (temperature, vibration)
- Radiation resistance
 Cost envelope
 (material grade)

Fields, Gradients and Apertures

Parameter	DR dipole	DR quad.	DR sext.	CBETA QF	CBETA BD
Dipole	0.14 T			0	-0.3081 T
Gradient		15 T/m		-11.562 T/m	11.147 T/m
Sextupole			75 T/m²		
Aperture Ø	65mm	65mm	65mm	86.2mm	80.2mm
Length	5.0m	0.6m, 0.3m	0.3m	0.133m	0.122m
Number	150	450 + 213	600	107	32 + others

- Some similarity to CBETA magnet parameters
- Easy to make magnets longer (join segments)
- Mass production @ good quality already done

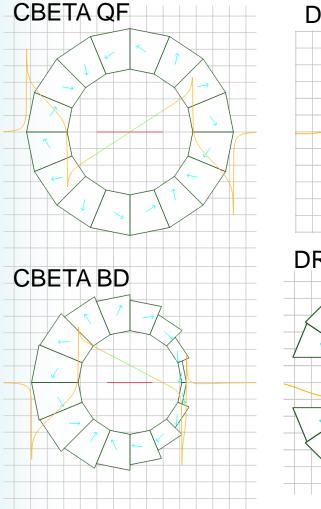
CBETA Permanent Magnets

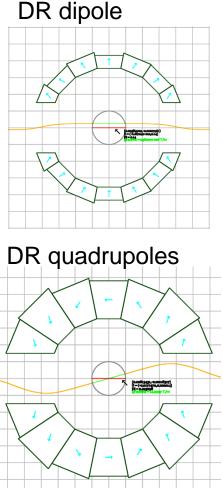
Halbach design made of NdFeB material

This is a combined dipole+quad

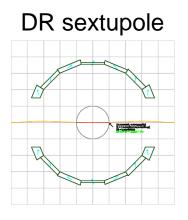
Being measured on rotating coil at BNL

3D printed multipole corrector pack inside


Windowframe corrector coil outside


Temperature stabilised by water (orange hoses)

CBETA Fixed-Field Return Arc

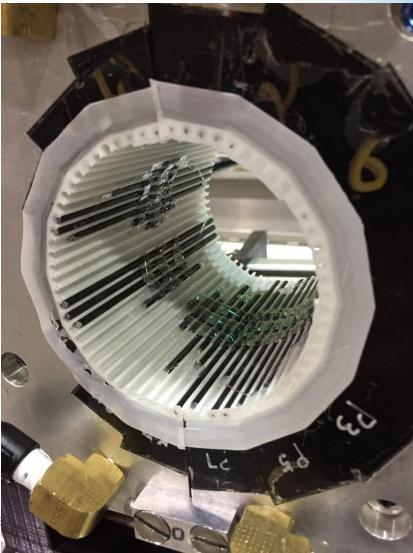

Magnet Cross-Sections (to scale)

Design rules:

- R=10mm good field
- <5×10⁻⁵ harmonic error
- 30mm gap for synchrotron radiation
- B_r=1.12T material (NdFeB high rad. tol.)
- B_r=1.158T for CBETA (NdFeB N35EH grade)

 Could use SmCo with slightly larger area

Field Quality, Good Field Region


- Field quality depends strongly on good field region radius definition (smaller R is easier)
- CBETA achieved <10⁻³ on R=25mm (quite big)

– Absolute strength <5×10⁻⁴

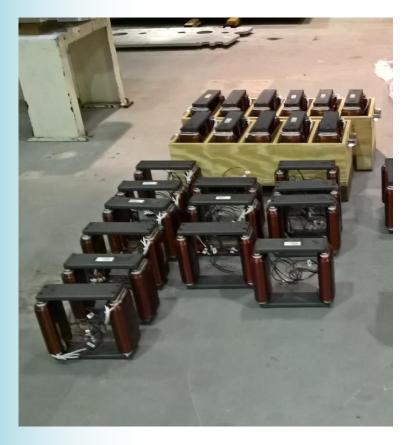
Relative field error	Initial	Tuned
Average	1.82×10^{-3}	2.19×10^{-4}
RMS	2.20×10^{-3}	2.56×10^{-4}
Maximum	9.81×10^{-3}	6.15×10^{-4}
Minimum	4.41×10^{-4}	3.05×10^{-5}
Median	1.50×10^{-3}	1.90×10^{-4}

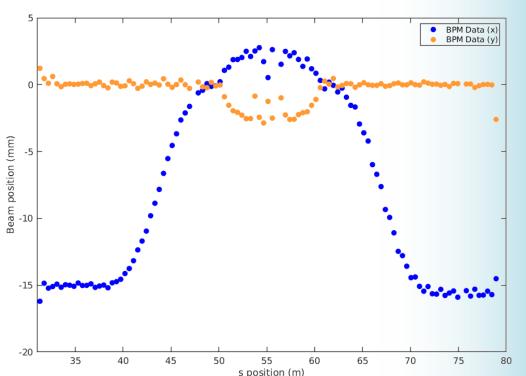
Shimming/Tuning Methods

- Shimming/tuning methods are critical for permanent magnet field quality
 - CBETA inserted iron rods within the bore (~8× improv.)
 - 3D printed insert
 - Process can be automated
 - Other options:
 - Mechanically adjust (CESR IR)
 - Block sorting (B_r only)

Adjustability Requirements

Magnet	Adjust Range	Adjust Frequency	
<mark>Arc dipole</mark>	<mark>fine adjustment</mark>	During commissioning only	
Arc quad.	30%		
Straight quad.	0-100%		
Arc sextupole	30%		


 CBETA's windowframe EM corrector gives a field change of 0.027 T at ~24W power


– This is a 9% relative field correction = 2.5mm shift

• Other methods for larger but less frequent adjustments include mechanical, rotation etc.

CBETA Closed Orbit Bumps (1-turn)

• Use of EM correctors on beam orbit

(November 6, 2019)

Stability (Temperature)

- NdFeB temperature coefficient is -1.1×10⁻³
- Magnet housing contains water channels

- Temperature stability better than ±0.2K

Strength variation less than 10⁻⁴

Radiation Resistance

- Depends strongly on material <u>coercivity</u> grade
 High field strength can also reduce resistance
- CBETA used NdFeB (N35<u>EH</u>) with 1kGy limit
 - Projected 74kGy = 1% field loss
 - Magnets instrumented with CsI dosimeters
- SmCo material is ~20% weaker field but ~100x more resistant to radiation
- See also A. Temnykh, NIM A 587, 13 (2008)

Material Cost

- CBETA 27.3m length for \$700k in PM material
 DR 1264m for \$33M material using length scaling
- By volume, \$4.48/cm³ for CBETA (incl. spares)
 DR \$15.6M, or \$5.8M for just the arc dipoles
 - Price could go lower for larger orders

Parameter	DR dipole	DR quad.	DR sext.	CBETA QF	CBETA BDx
Length	5.0m	0.6m, 0.3m	0.3m	0.133m	0.122m
Number	150	450 + 213	600	107	107
Total length	750m	333.9m	180m Σ=1264	14.2m	13.1m Σ=27.3
Area	17.3cm ²	62.9cm ²	4.72cm ²	50.9cm ²	65.3cm ²
Volume/cm ³	8665	3776, 1888	141	676	797
Total vol./m ³	1.30	2.10	0.085 Σ=3.49	0.072	0.085 Σ=0.158

Recommendations

 Looks like a CBETA-derived design could be a good fit for the ILC DR arc dipoles

Other magnets require more adjustment

 Building and measuring a prototype at BNL is comparatively easy

- A few person-months effort, maybe \$20k material

- Should try to define other issues
 - Radiation levels in the tunnel environment
 - Required field quality, size of good field region