Activities at KEK

Seasonal ILC detector meeting

Keita Yumino

Introduction

The aim of study

- To develop a high-performance GEM as a detector for LCTPC
- Our Asian-GEM has some problems
- discharge,
- need for support structure, and
- gas gain non-uniformity

GEM optimisation study

Theoretical approach

Thickness measurement

K.Yumino

All students of KEK-ILC group Y.Aoki, T.Mizuno, J.Nakajima, K.Yumino

GEM optimisation study

of the two parallel electrodes are canceled

Motivation gas: He + iC4H10 = 94:6 thickness dependence of gas gain in the case of MICROMEGAS

M increases as *d* increases, reaches a maximum

M is at maximum in the range of gaps between 30-100 μm.

> This is the range currently used by the MICROMEGAS detectors

In this range, gas gain M is maximum and its fluctuations due to defects of flatness

Stability condition!!

In this range, gas gain M is maximum and its fluctuations due to defects of flatness of the two parallel electrodes are canceled Stability condition!!

Motivation

thickness dependence of gas gain in the case of MICROMEGAS

Is there a "Stability condition" in the case of GEM?

current study

I'm now working on investigation of the conditions under which the thickness dependence of the gas gain is constant.

- •Find plateau using Asian GEM geometry.
- •Theoretically derive the "Stability conditions" under which the gas gain is stable.
- •Verify the theory using Asian GEM geometry.

First, we assume that Legler's model¹ is correct Legler's model have 2 assumptions

- <u>distance</u> so as to gain enough energy for ionisation from the E-field.
- 2. reached the threshold energy like a step function
 - probability
 - constant

^LSTATISTICS OF ELECTRON AVALANCHES AND ULTIMATE RESOLUTION OF PROPORTIONAL COUNTERS

Theory

ionising collisions may occur <u>only after the seed electron flying over a minimum</u>

the probability of ionising collision being constant after the seed electron having

for stable operation, $\frac{dG}{G} = 0$ is required

Therefore, we have the "Stability condition"

heory
ariation
$$\frac{dG}{G}$$

$$1 - \frac{\epsilon}{\sigma_0} \left(\frac{\partial \sigma_0}{\partial \epsilon}\right) \int \chi \,\delta\left(\frac{d\Delta}{\Delta}\right)$$
$$= n\Delta \frac{U_0}{V} \sigma_0(\epsilon), \, \chi = \frac{\ln G}{\delta}, \text{ and } \Delta : \text{ thickness of } C$$

the coefficients can be deleted by choosing these parameters.

the details of these parameters are put on a backup slide, p22

 σ_0 : effective cross section

 ϵ : scaling variable =E/n

- 1. Find the "plateau region" in gas gain distribution 2. Look at free path distribution after each collision \rightarrow Mean free path l3. cross section $\sigma \sim \frac{1}{1}$ 4. σ vs ϵ
 - \rightarrow Find stability condition

$\partial \sigma_0$	 σ_0		
$\partial \epsilon$	 ϵ		

4. Compare the result

Process

Thickness dependence of gain: Asian GEM

If our theory is correct, the stability condition

 $\partial \epsilon$

Free path distribution after each collision

To determine the cross section for each electric field value Mean free path of avalanche electrons *l* was used

- \rightarrow cross section $\sigma \propto \frac{1}{1}$

$\frac{\sigma_0}{-}$:cross section σ_0 divided by $\epsilon = E/n$

"Stability condition" is satisfied!!

the thickness of GEM@58 kV/cm is ~ 30 μm (+20 μm copper thickness)

and this thickness is almost same as CERN GEM 50 μm

Simulation result

 $\Delta V = 350 V$

1 atm, Ar-CF₄-iC₄H₁₀ (95:3:2)

this intersection point correspond to the electric field of $\sim 58 \ kV/cm$

Thickness measurement

Thickness dependence of gain

From our simulation study, gas gain strongly depends on the thickness of GEM measured gas gain over the pad

There is a gain variation of about 30% between the maximum and minimum values. →due to thickness variation? Need to investigate the cause of gain variation.

369 ^{8.2}	3847.65	4008.86	4343.68	4142.32	4624.67	5202.42	4799.74	4878.11	4803.72
3438.5	3562.58	3518.62	3886.46	3650.78	4126.89	4461.34	4141.72	4229.18	4433.65
3495.75	3622.02	3433.96	4191.23	3804.44	4456.13	4508.45	4166.15	4185.05	4581.96
3660.72	3652.08	3569.03	4046.58	3698.87	3856.54	4493.92	4448.39	A171.43	4650.93
3562.91	3540.77	3457.73	4105.9 ³	3800.09	4045.77	4406.71	4206.47	416 ^{6.48}	4388.76
3831.41	3680.44	3653.3	6 393 ⁵	3 370	1.22 hinn 41	60.17	4590.82	4156.04	4238.48
3797.01	3769.26	3527.6	6 3TTB	AA 347	1.51 40	36.71	4502.12	4012.47	4098.57
3944.57	3897.27	3617.6	1 3813	14 357	1.15 4	05A.A	4590.04	4102.71	4249.47
3969.58	3804.91	3571.1	1 3742	.82 350	6.52 38	21.32	4400.07	4318.08	4127.47
4186.11	4014.95	3959.9	9 4134	07 386	8.29 41	71.64	4696.38	4738.16	4452.74

arxiv:1701.05421

Thickness measurement system

Done! \overleftarrow{b} 1. 3D modelling of the measurement system Done! 2. Setup (Assembly, Sensor calibration)

Our plan

- 1. 3D modelling of the measurement system Done!
- Setup (Assembly, Sensor calibration) 2.
- 3. Software development
- Thickness measurement 4.
- 5. Analysis

Compare the measurement result with simulation and investigate the cause of the large gain non-uniformity

Our plan Done!

Not yet... but on going!

will be finished by the end of March!

Summary

- To develop a high-performance GEM as a detector for LCTPC, we have worked on investigation of gas gain fluctuations.
- Theoretically derive the "Stability conditions" under which the gas gain fluctuations are cancelled.
- The gain plateau was found in the area corresponding to the stability condition.
- Therefore stability condition predicted by our theory is found consistent with the simulations so far.
- We have also been developing the thickness measurement system to investigate the cause of variation of measured gas gain.

Future Plan

Our simulation result indicates that we have to apply 350 V to 50 μm thick GEM. we already have discharge problems with 100 μm thick GEM, probably discharges will be a problem with 50 μm thick

thicknesses of GEM in the range of 10 $\mu m \sim 200 \ \mu m$ to verify our theory.

- we need to investigate a geometry and a setup that satisfies "Stability Conditions" with sufficient collection efficiency > 80% and \bullet
 - a high voltage that discharge does not happen much.

Also, we want to know

- how the intersecting points (p.13) that satisfies the stability condition changes by changing the applied high voltage and
- the effect of changing the hole size and copper thickness

- This time, we applied a high voltage of 350 V such that sufficient gain was obtained for

equation of gas gain variation $\frac{dG}{c}$ We have where G : gas gain V: applied high voltage

 $E = \frac{V/\Delta}{M}$, and Δ : thickness of GEM n

Gas parameter U_0 : ionisation potential *n* : gas density σ_0 : cross section

the coefficients can be deleted by tuning Δ , V depending on the gas parameters

Theory $\frac{dG}{G} = \left(\frac{1}{1+\chi+\eta}\right) \left[1 - \frac{\epsilon}{\sigma_0} \left(\frac{\partial\sigma_0}{\partial\epsilon}\right)\right] \chi \,\delta\left(\frac{d\Delta}{\Delta}\right)$

scaling variable

$$\epsilon = \frac{E}{n}, \ \delta = \frac{V}{U_0}, \ \eta = n\Delta \frac{U_0}{V} \sigma_0(\epsilon), \ \chi = \frac{\ln \epsilon}{\delta}$$

Polya distribution $Q = a \cdot \sum G_i + \Delta Q = a \cdot \overline{n} \cdot \overline{G}$ As f gets smaller, the fluctuations become more stable $P_{G}(\overline{\overline{G}}; \theta) = \underbrace{(\theta + \frac{1}{P})(\theta + 1)}_{P_{G}(\overline{\overline{G}}; \theta) = \underbrace{(\theta + \frac{1}{P})(\theta + 1)}_{\Gamma(\theta + 1)} \underbrace{(\theta + \frac{1}{P})(\theta + \frac{1}{P})}_{Small} \underbrace{(\theta + \frac{1}{P})(\theta + \frac{1}{P})}_{I = 1} \underbrace{(\theta + \frac{1}{P})(\theta + \frac{1}{P}$ avalanche e electron charge center of σ_n $\sigma_n = \frac{1}{n} (goodX)$

bad

Avalanche fluctuation

Avalanche fluctuation f

Larger values of f make the detector performance worse

Position resolution $\sigma_x = \sqrt{\sigma_0^2 + \frac{C_d^2 \cdot z}{N_{eff}}}$ fluctuation small large avalanche electron f:small f:large N_{eff} :large N_{eff} :small

z: drift length N_{eff} : effective number of electron C_d : diffusion constant of gas

$$\frac{1}{N_{eff}} = \left\langle \frac{1}{N} \right\rangle * (1+f)$$

N : number of primary electrons

These electrons contribute little to the position measurement

 $\rightarrow N_{eff}$ can be small

Avalanche fluctuation f

affects the detector performance

Make the position resolution better by increasing N_{eff} To increase N_{eff} , we need to increase $\langle N \rangle$ and decrease f

depends on the gas, density, pad row height and so on

