Jet Energy Scale Calibration using $e^+e^- \rightarrow qq\gamma$

Takahiro Mizuno sokendai

Current Status

- Reading the study of T. Ueno, ALR measurement preceding work.
- I have a lot of questions!! (e.g. the reason why didn't use e+e--> e+e- process)
- Checking the new ILC-250 2f samples (photon PFO energy and angular biases).
- Junping san gave me weight files and some advices on yoke energy muon ID. I am arranging source codes now.
- Gave a presentation on JES calibration at KEK Student Day.
- I got a naive question... -> I will explain.

Jet Energy Reconstruction Result

Jet 1

Jet 2

Reconstructed energy not only can calibrate the measured energy, but also has better resolution.

Fit the relative difference of reconstructed jet energy with Gaus (Core)+Gaus (Base)+exponential Calibration is based on the mean value of the Gaus (Core).

-> Check the theta and energy dependence.

Mean and Sigma Energy Dependence⁵

Mean value of the core gaussian is order of 10⁻⁴ independent on the jet energy. Sigma value is smaller in the higher energy.

Mean and Sigma Energy Dependence⁶

Mean of the Fitting Gaussian

Sigma of the Fitting Gaussian

Reconstruction Method

Main idea: it is possible to reconstruct jet energies based on jet angles and masses using 4-momentum conservation

Jet Energy [GeV]

Inputs and outputs Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \phi_{J1}, \phi_{J2}, \phi_{\gamma}, m_{J1}, m_{J2}) \rightarrow$ Determine $(P_{J1}, P_{J2}, P_{\gamma}, P_{ISR})$

Jet angles measurement at HCAL (also jet mass) is better at high E_J

Backup

Calib. Uncertainty

Calibration uncertainty :=

$$\sqrt{(\Delta\mu_{PFO})^2 + (\Delta\mu_{M3})^2}$$

Square root of the squared sum of the error of the mean

Mean Value

Particle ID := flavor of the seed of the jet

Mean Error

Sigma Value

Particle ID := flavor of the seed of the jet

Fraction

Fraction := Size of the fitting Gaussian Core/(Core+Base)

Calib. Uncertainty

Calibration uncertainty :=

$$\sqrt{(\Delta\mu_{PFO})^2 + (\Delta\mu_{M3})^2}$$

Square root of the squared sum of the error of the mean

Jet mass distribution

Jet1

Jet2

Correct photon selection

Correct photon selection cut 1

Cut1: M_{2j} <125 GeV && E_{vis} >200 GeV

Correct photon selection cut 2

Wrong photons are near jet axes

Cut2: $\cos\theta(\text{Jet1} \cdot \gamma) < 0.95 \&\& \cos\theta(\text{Jet2} \cdot \gamma) < 0.95$

$M_{2j} \ distribution \ after \ all \ but \ M_{2j} \ cut$

Source of the bias

Source of the bias is investigated. -> 2 major source are found.

(A) Beam energy spread(B) Error of the jet mass inputs

Source (A): Beam energy spread

When all inputs are all MCtruth,

Toy MC Simulation

Beam energy spread causes negative bias in jet 1 reconstructed energy. Positive bias in Jet 2 is also confirmed as well.

Source (B): Error of the jet mass inputs²³

Large dependence on both jet 1 mass and jet 2 mass input deviations. If <8 × 10⁻⁴ accuracy is necessary, compensation to the reconstructed jet energy should be introduced.

PFO Mean Value

Particle ID := flavor of the seed of the jet

PFO Sigma Value

Particle ID := flavor of the seed of the jet

PFO Mean Error

PFO Fraction

Fraction := Size of the fitting Gaussian Core/(Core+Base)

