ILD Top/HF group meeting Reconstruction bias on polar angle spectrum in tt production 12/02/20

Yuichi Okugawa, Roman Pöschl, Hitoshi Yamamoto

0. Outline

- 1. Observation
- 2. Possible Sources of Systematic Errors
- 3. Selection
- 4. Effect of VTX x VTX Method
- 5. Conclusion

 Polar angle distribution of top quark for all reconstructed events

 Polar angle distribution of top quark only using vtx x vtx comparison.

 Polar angle distribution of top quark for all reconstructed events

Background?

- Mis-combination of b and W?
- Single Top Background?
- Reconstruction bias

 Polar angle distribution of top quark only using vtx x vtx comparison.

 Polar angle distribution of top quark for all reconstructed events

Background?

- Mis-combination of b and W?
- Single Top Background?
- Reconstruction bias

Source of systemic error

 Polar angle distribution of top quark only using vtx x vtx comparison.

What are we interested?

- Key parameters
 - *b*-jet Energy
 - $-0.9 < \cos \theta_t < -0.6$
 - Single Top Tag (based on Gen info)
 - Usage of vtx x vtx

2. Possible Sources of Systematic Errors

- Two processes are difficult to be distinguished. •
 - Share the same final states. $(bbq\bar{q}'\ell\bar{\nu})$
 - Events are mixed in the parton level.

Combination

 Charge comparison is necessary to distinguish t and \overline{t} .

$\vdash \mathbf{VTX} \times \mathbf{VTX}$

One of the ways to compare charges. It compares charges associated to secondary vertices.

2. Possible Sources of Systematic Errors

 This analysis considered events to correspond to top quark pair production when the following criteria is satisfied for both of W and *b* pairs.

$$|m_{Wb} - m_t^{MC}| < 15 \text{ GeV}$$

If only one of these pair meet this criterium, the events are labeled as single top quark event.

Fuster, J 2015, arXiv:1411.2355 [hep-ex]

b-jet Energy Distribution

- b-jet energy distribution of hadronic top for all reconstructed events.
- black: $\cos \theta < -0.9$ && singleTop tag

- b-jet energy distribution of hadronic top only using vtx x vtx comparison.
- black: vtx x vtx && singleTop tag
 ↑
 no cos θ < − 0.9

Phase-space region with enrichment of single top events

jetE_b **for** $-0.9 < \cos \theta_t < -0.6$

Phase-space region with enrichment of single top events

jetE_b **for** $-0.9 < \cos \theta_t < -0.6$

This phase-space region is characterized by the low energetic b-jets. From the distribution, however, there's no obvious difference between single-top and regular tt events. VTX x VTX doesn't suppress much single top events.

E	fficiency Calculation	Ø.14 UUU UU .12
•	In order to seek the parameter dependency of	0.1
	vtx x vtx selection, the efficiency was	0.08
	calculated as following:	0.06
	Fraction = $\frac{\# \text{ of events passed vtx x vtx}}{\text{The entire } \# \text{ of Reconstructed events}}$	0.04
•	b polar angle distribution has drop in efficiency	-1 -
	at forward and back end of the detector due to acceptance.	×10 ⁶ .12 - - - - - - - - - - - - - - - - - - -
•	vtx x vtx selection induces non-uniform	0.08

efficiencies for the regions in which we expect good acceptance.

Efficiency Calculation

In order to seek the parameter dependency of vtx x vtx selection, the efficiency was calculated as following:

> # of events passed vtx x vtx Fraction = The entire # of Reconstructed events

- b polar angle distribution has drop in efficiency \bullet at forward and back end of the detector due to acceptance.
- vtx x vtx selection induces non-uniform efficiencies for the regions in which we expect good acceptance.

Entries

40

30

20

10

Single Top && $-0.9 < \cos\theta < -0.6$

Jet Energy

Total # Events: 366718 Selected # Events: 4571

Track Energy

Track Momentum

Single Top && $-0.9 < \cos\theta < -0.6$ && Method1

Jet Energy

Total # Events: 366718 Selected # Events: 628

Track Energy

Track Momentum

Single Top && $-0.9 < \cos\theta < -0.6$ && NOT Method1

Jet Energy

Total # Events: 366718 Selected # Events: 3943

Track Energy

Track Momentum

5. Conclusion

- Reconstructed spectrum for the polar angle distribution of top was tilted when vtx x vtx method was applied.
- In the *tt* analysis, this inefficiencies may have been compensated by the other methods (e.g. kaon x kaon, isolated lepton chg, etc...)
- Detector optimization is required to avoid inefficiencies come with vtx x vtx selection.
 - We need to clearly define the goals for the optimization.
 - Revisit vertex restorer and apply a correction with the help of the MC.

- The distribution tends to accumulate at the lower end of polar angle. ($-0.9 < \cos \theta_t < -0.6$ region was investigated)
- 2. Reconstruction bias from vtx x vtx
 - vtx x vtx comparison method fails to reconstruct the events with soft *b*-jets. (in particular, b-jets with low track energy and momentum)
 - The bias also serve as filter against single top events yet the contribution is very weak.

5. Conclusion

- Reconstructed spectrum for the polar angle distribution of top was tilted when vtx x vtx method was applied.
- In the *tt* analysis, this inefficiencies may have been compensated by the other methods (e.g. kaon x kaon, isolated lepton chg, etc...)
- Detector optimization is required to avoid inefficiencies come with vtx x vtx selection.
 - We need to clearly define the goals for the optimization.
 - Revisit vertex restorer and apply a correction with the help of the MC.

- The distribution tends to accumulate at the lower end of polar angle. ($-0.9 < \cos \theta_t < -0.6$ region was investigated)
- 2. Reconstruction bias from vtx x vtx
 - vtx x vtx comparison method fails to reconstruct the events with soft *b*-jets. (in particular, b-jets with low track energy and momentum)
 - The bias also serve as filter against single top events yet the contribution is very weak.

Backup

Generated Lep/Had Top Mass

 Events clusters around 174 GeV region yet still huge amount of off-shell events.

MC Top mass

Gen Top mass for the entire events

Gen Top mass after single Top ID

Reco Top mass

Reco Top mass for the entire events (Top1=Had, Top2=Lep)

Reco Top mass after single Top ID

35 30 25 15 10

Reco Top mass (zoomed)

Reco Top mass for the entire events (Top1=Had, Top2=Lep)

Reco Top mass after single Top ID

SingleTop && Cos0.9 && Method1

Fit Parameters (Crystalball)

NAME	VALUE	ERROR
Constant	4.96431E-02	2.25619E-03
Mean	7.16641E+01	1.76326E+00
Sigma	2.6926E+01	1.62229E+00
Alpha	1.54754E+00	7.3487E-01
Ν	-1.12659E+05	4.24264E-01

Total Events: 1.51585e+06 Selected: 721

SingleTop && Cos0.9

Fit Parameters (Crystalball)

NAME	VALUE	ERROR
Constant	5.06353E-02	5.50782E-04
Mean	6.7238E+01	5.53692E-01
Sigma	2.87102E+01	5.70428E-01
Alpha	1.51941E+00	3.31116E-03
Ν	1.53473E+00	4.24264E-01

Total Events:1.51585e+06Selected:12185

SingleTop

Fit Parameters (Double Gaus)

NAME	VALUE	ERROR
Const1	3.30635E-02	6.16687E-04
Mean1	1.0408E+02	1.98225E+00
Sigma1	3.24949E+01	2.1929E+00
Const2	1.89943E-02	2.70058E-03
Mean2	5.7729E+01	8.85771E-01
Sigma2	1.97371E+01	8.33313E-01

 Total Events:
 1.51585e+06

 Selected:
 183956

Cos0.9

Fit Parameters (Log Normal)

NAME	VALUE	ERROR
p0	4.132E+00	6.76613E-02
p1	8.08274E+01	8.50019E-01
p2	1.65201E+00	1.15857E-02

Total Events:1.51585e+06Selected:45868

Max = 62.823 GeV

Method1

Fit Parameters (Triple Gaus)

NAME	VALUE	ERROR
Const1	1.01315E-02	2.57171E-03
Mean1	5.08603E+01	1.94586E+00
Sigma1	1.37695E+01	1.40127E+00
Const2	2.56534E-02	5.36272E-03
Mean2	8.14914E+01	5.19481E+00
Sigma2	2.27535E+01	1.87701E+00
Const3	3.08501E-02	2.37975E-03
Mean3	1.31256E+02	5.68089E+00
Sigma3	2.99661E+01	4.16266E+00

Total Events: 1.51585e+06 Selected: 107715

Max = 96.5769 GeV

All

Fit Parameters (Triple Gaus)

NAME	VALUE	ERROR
Const1	2.32525E-03	2.55238E-04
Mean1	4.6308E+01	4.37737E-01
Sigma1	1.31458E+01	6.46767E-01
Const2	5.20107E-03	3.89298E-04
Mean2	7.28125E+01	1.6434E+00
Sigma2	2.36618E+01	6.96797E-01
Const3	7.52981E-03	1.56847E-04
Mean3	1.24267E+02	1.85224E+00
Sigma3	3.5185E+01	1.28613E+00

Total Events: 1.51585e+06

Max = 91.6638 GeV

b-jet Energy vs MC $\cos \theta_b$

Fit func: Log

Norma	
-------	--

bjet Energy vs top polar angle

2D hist for the entire events.

2D hist after method1 application.

bjet Energy vs top polar angle

2D hist for the entire events.

contour plot for the left distribution

Number of Events:

All Reco Events:1.51585e+06Single Top Tagged Events:183956

All Reco Events: Vtx x Vtx Used Events:

1.51585e+06 107715