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Abstract

Various physics observables can be determined from the localisation of distinct edge-like
features in distributions of measurement values. In this paper, we address the observation
that neither differentiating nor fitting the measured distributions is robust against significant
fluctuations in the experimental data. We propose the application of Finite Impulse Re-
sponse (FIR) filters instead. To demonstrate the method, we consider the typical case in
particle physics in which the precise localisation of kinematic edges, often blurred by e.g.
background contributions and detector effects, is crucial for determining particle masses. We
show that even for binned data, typical for high energy physics, the optimal FIR filter kernel
can be approximated by the first derivative of a Gaussian (FDOG). We study two highly
complementary supersymmetric scenarios that, if realised in nature, could be observed at
a future high-energy e e collider such as the International Linear Collider (ILC) or the
Compact Linear Collider (CLIC). The first scenario considers the production of Ei—pairs
while the second focuses on the ;Eli and 923 -pair production. We demonstrate that the FIR
filter method for edge extraction is superior to previously employed methods in terms of
robustness and precision.

ILD-PHYS-INT-201X-XXX


https://bib-pubdb1.desy.de/record/416980
https://bib-pubdb1.desy.de/record/402736
https://agenda.linearcollider.org/event/8147/

Abstract Content structure

* How to use numerical analysis * Introduction

techniques typical of image and « Theoretical basis, description of the
signal processing to identify the with algorithm and of the

the highest precision the position of characterization procedure
P U B Ll ( ATl O N an edge-like feature in a discrete « Description of the two ILD scenarios

distribution like a histogram

which provide a suitable testing
SUMMARY plls

» Application of the algorithm to those
two analysis

e Conclusions

|
=\ e Moiseless Step Function (g )
=]

o Moisy Step Function {gd}
— Filter Response (R

Ev * Response Extrema

=]

-80 —-60 -40 =20 0 20 40 80

Bin Index (i)



REVIEW SUMMARY

e |LD referees: D. Jeans and R. Efe
e First submitted Apr. 18, 2019. First review round May 2019
e Second submission June 11, 2020. Second review round June 2020

e |dentify and explain better the key messages.
e |dentify further observables to deliver a clearer message.

e The key points and the numerical results of the benchmark remained the
same




What is it and when to use it |

KEYPOINTS

* A numerical algorithm to measure the position of the flex point of a function reducing the effect of noise or statistical
fluctuations

* Best used when there is no analytic function modelling the distribution without arbitrary assumptions

* E.g. The position of kinematic edges when the initial state or the resolution effects cannot be described by an analytic
function (that is almost always)

How do we estimate the errors

* Characterizing the method on analytic test functions to understand its performance
» Data-driven approach to evaluate the statistical errors
* With a set of Montecarlo tests to evaluate the systematic errors and calibrate the measurement

How can this technique improve the results of an analysis

* Apply the algorithm to two ILD benchmark scenarios already analyzed with other methods
* Improved resolution in the determination of the s-electron masses in the STC4 scenario
* Improved stability in the determination of the charginos and neutralinos masses in the Point 5 scenario




RELEVANT
CHANGES: SEC. 2
p

Properly
defined the
characterizing
parameters of
the
benchmark
functions

<
=

Clarified that
the algorithm
applies to
discrete
functions in
general, not
just histograms

AN

*For all presented benchmarks we
will use a Gaussian smoothed step
*The width is the distance
between the 10" and the 90t
percentile

*The signal for the definition of the
SNR is the maximum value of the
analytic derivative

* Consistently used the word grid
spacing, rather than binning
unless explicitly referring to
histograms




Always showing the benchmark results for

the same function set

* Previously for some benchmarks we were comparing
different parameterization of the same filter, elsewhere
we compared different filters with similar scale.

* Now for all the benchmark we show both type of

comparison

Using the new benchmark observable a; /W

» Simulates the effect of changing the binning resolution

* Useful to transition to the histograms case
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RELEVANT
CHANGES:
SEC 4

e Clarified the source of the characteristic
modulation in the calibration plofts.

* Improved the explanation of the calibration
procedure
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(a) Low-momentum edge calibration (b) High-momentum edge calibration
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