
ILC Accelerator Systems:

Technical Preparation and Work Packages (WPs) during ILC Pre-lab

<u>Outline</u> :

The International Linear Collider (ILC) is an electron-positron collider with a total length of approximately 20 km. The ILC consists of the following components: electron and positron sources, damping rings (DR) to reduce the emittance (a value corresponding to the spread of the beam) of the e-/e+ beams, beam transportation from the damping rings to the main linear accelerators (RTML), the main linear accelerators (ML) including bunch compressors (to compress the beam bunch length) to accelerate the e-/e+ beams using superconducting RF technology, beam delivery and final focusing system (BDS) to focus and adjust the final beam to increase the luminosity, and the beam interaction region for machine and detector interface (MDI) where detectors are installed. After passing through the interaction region, the beams go to the beam dumps (DUMP).

The technical preparation plan defines all activities necessary during the main Preparation Phase to prepare for the construction phase of the ILC. The technical preparation plan will be conducted by the ILC Pre-Lab. The plan assumes that most of the preparation tasks will be carried out with international collaborations, based on agreement (MOU) between laboratories/institutions. The technical preparation work packages have been discussed and defined by IDT-WG2.

The work packages include:

- ML and SRF: Cavity and Cryomodule (CM) production readiness, based on global cavity fabrication of ~ 3 x 40 cavities and the required RF performance achievement with the \geq 90 % successful, and on global CM fabrication of 3 x 2 CMs using 40 % of the cavities fabricated,
- The global CM transfer program to be conducted to practice to simulate all the process of

the CM fabrication satisfying the high-pressure regulation, safe transport across oceans, and qualification of the CM performance after shipping from Europe and Americas to Japan on surface across oceans. One of two CMs in each region to be used for this purpose,

- Positron source: The final design selection either with undulator-driven or electron driven option and technology readiness to be demonstrated,
- DR and BDS: Readiness of nanobeam technology (ATF3 and related) based on DR and BDS subsystems to be demonstrated in particular for fast kicker and feedback controls, and
- Beam dump: system design to be established including beam window handling, cooling water circulation, and safety assurance.

Total 18 (3 SRF, 8 Sources, 3 DR, 2 BDS and 2 Dumps) are proposed. Each work package includes:

- technical readiness evaluation (listed in each technical proposal)
- $\ensuremath{\text{EDR}}$ documentation with cost estimate confirmation for the ILC construction

Timeline (example of SCRF and positron)

Four-year preparation period is assumed. In case of SCRF and positron, the following schedule is considered.

1st year:

- Extend SRF cost reduction R&D, and start a pre-series SCRF cavity production for industrialization readiness, and
- Continue positron source technology survey and evaluation.
- 2nd year:
 - Select positron scheme (so essential preparation for positron selection assumed to be finished by 1^{st} year)
 - Complete SRF cost-reduction R&D, and start the work for assembly of the cavities with CMs,
- 3rd year∶
 - Demonstrate "Global CM transfer, including legal process for high-press-gas equipment, shipment, and SRF QA test after surface shipment across the ocean,
 - Mature ILC Lab. planning and prepare the lab. including the management and site,
 - Complete prototyping of critical items (such as positron target)

- Prepare for the Engineering Design Report (EDR) and proceed the EDR cost-review, 4th year:

- Evaluate CM performance based on CM shipment, and prepare for Hub Lab. functioning
- Progress prototyping of critical items (such as positron target)
- Publish the EDR, and
 - Prepare for large procurement process, in particular for civil engineering and SRF.

Description of each work package

<u>Appendix</u>

Area system	Work package	Items
SRF1 (+ Infra.)	Cavity Industrial- Production Readiness	Cavity production, partly incl. cavities w/ He tank+mag. shield for CM, high pressure gas regulation, EP/HT/Clean work, partly 2nd pass, incl. VT, pre-tuning
		Plug-compatibility, surface treatment, Nb material to be reconfirmed/decided
		Cavity Production Success yield
		Tuner baseline design to be frozen (decided)
		Infrastructure for EP, HT, VT, pre-tuning, etc. (with each regional responsibility)
		Coupler production incl. preparation/RF processing readiness (not incl. klystron, baking furnace, clean room)
		Infrastructure for klystron, baking furnace, and coupler conditioning, and associated environment (with regional responsibility)
		Tuner production readiness
		SCM (Q-D combined) production readiness
	Cryomodule (CM) Transport and Performance Assurance	CM production incl. high pressure gas, v. vessel, cold-mass, and assembly (cavity-string, coupler/tuner, SCM etc.) CM test and degradation mitigation (in 2-CM joint work)
SRF2		at production site for the readiness in the acc. tunnel work,
(+ Infra.)		CM Transportation cage and shock damper preparation
		Mockup-CM ground transportation practice
		Real-CM ground transportation test
		Global CM transfer with sea shipment (with attention for longer CM than that at E-XFEL)
		Performance assurance test after global CM tansfer
		Returning transport back to home country (by sea shipment)
		Hub-lab Infrastructure for the CM production, assembly, and test (with regional responsibility and/or each lab.)
SRF3	Crab Cavity (CC)	Decision of installation location in accelerator tunnel, combined with cryogenics and RF utility locations.
		Design and development of prototype
		cavity/coupler/tune/CM include. beam extraction line CC production readiness (incl. EP/HT/Clean work), and
		CM assembly with coupler/tuner
		CC , coupler, and tuner test, incl. preparation work
		CC-CM prototype assembly and test incl. harmonized operation with two cavities
		Infrastructure for CC (and CM) development and test (w/ corresponding lab.)
Sources		
e- source	Electron Course	Cathada Ilimb weltana Lacan
Sour1 e+ undulate	Electron Source	Cathode, High voltage, Laser
e+ undulate Sour2	Undulator	Simulation (field,errors, alignment)
Sour2 Sour3	Rotating target	Design finalization
		··· σ

Following work packages are listed in this technical proposal.

	1	Wheel			
		Magnetic bearings			
		6 6			
Sour4	Magnetic focusing	Design finalization,Wheel Magnetic bearings			
Sour4	system	Full wheel prototype			
e+ e-driver	u scheme	Full wheel prototype			
		Stress calculation			
Sour5	Rotating target	Vacuum seal test			
		Target module			
	Magnetic focusing system	Flux concentrator conductor			
Sour6		Power source			
Souro		transmission line			
		System prototype			
		APS cavity design			
		APS cavity prototype			
		Transient beam loading Operation and tuning (incl. multiple bunches)			
Sour7	Capture cavity, linac	L-band Klystron			
		Power unit prototype			
		solenoid			
		fast position monitor (separate e+ and e-)			
Sour8	target replacement	Target replacement system			
Damping F					
		System design : Optics optimization with magnet model			
	System design of ILC	Simulation : Dynamic Aperture with magnet model			
DR1	damping ring	Normal Magnet Magnet : Magnet design			
		Permanent Magnet : Magnet design			
		Permanent Magnet : Prototype (?)			
		Simulation : Electron Cloud Instability			
DDo	Evaluation of the collective effect in the ILC damping ring	Simulation : Ion trapping Instability			
DR2		Simulation : Fast Ion Instability			
		System design : Orbit FB for Fast Ion Instability Beam test : Orbit FB for Fast Ion Instability			
		Fast kicker: System design; DR and LTR/RTL optics			
		optimization			
		Fast kicker: Hardware preparation; based on FID pulser			
DDo	System design of ILC	Fast kicker: System design & Prototyping ; based on			
DR3	DR Injection/extraction kickers	induction kicker			
		Fast kicker: Long-term stability test at ATF			
		E-driven kicker: System design, include the induction			
		kicker development			
BDS					
	System design of the ILC final focus beamline	System design : beam optics and hardware optimization			
		Simulation : Intensity dependence evaluation and correction			
BDS1		Beam test : 2nd order optics correction			
DDSI		Beam test : Intensity dependence correction			
		Beam test : Long-term stability test of IP beam size and			
		position at ATF			
		System design (include the anti-solenoid)			
BDS2	System design of the FD magnet package	Vibration test			
D D		vibration test			
Beam Dum	np	En sin souine design a Court a Claman de			
		Engineering design of water flow system			
	System design of the main beam dump	Engineering design and prototyping of components; vortex flow in the dump vessel, heat exchanger, hydrogen			
Dump1		recombiner			
Pambi		Engineering design and prototyping of window sealing and			
		remote exchange			
		Design of the countermeasure for failures / safety system			
	1				

	System design of the
Dump2	photon dump for
	undulator positron source

ILC parameters:

Parameter	Unit	Requirement	Design	Achieved	Facility
<u>Electron Source</u>					
Bunch Charge	nC	3.2	4.8	8	SLAC -SLC
Average Beam current	mA	21	42	1000	JLAB
Beam current in pulse	mA	5.8	11.6	60	Cornell U.
Polarization	%	80	80	90	Nagoya, SLAC, KEK
Quantum Efficiency	%	0.5	0.5	2.2	Nagoya
Drive Laser (in pulse)	W	1.8	10	>10	Commercially available
Positron Source					
Bunch Charge	nC	3.2	4.8	8	SLAC SLC (E-Driven)
Undulator scheme		0.2	410	<u> </u>	
Undulator pitch	mm	11.5	11.5	2.5	SLAC E166
	%	30		80	SLAC E166
Positron Polarization (optional)	70	30	30	80	
Ti alloy Target Heat Load (PEDD)	J/g		61	160	Estimated from physics constant table
QWT peak field	Т	1		2.3	KEK
rget radius mm 500					
Target weight	kg	50			
Target tangential velocity	m/s	100			
	-	2000			
Target rotation	rpm	2000			
Beam heat load	kw Da				
Vacuum pressure	Pa	10^-6			
<u>E-driven scheme</u>					
W-Re Target Heat Load (PEDD*)	J/g		34	70	SLAC SLC (E-Driven)
Flux Concentrator Peak field	Т	5		10	BINP
Target radius	mm	250			
Target weight	kg	65			
Target tangential velocity	m/s	5			
Target rotation	rpm	20	0		
Beam heat load	kw	20)		
Vacuum pressure	Pa	10^	-6		
APS cavity					
SCRF					
Module gradient	MV/m	MV/m 31.5 (+/- 20%)		~31.5	DESY, FNAL, JLab, Cornell, KEK
Cavity Q value (Q0)		10^10		~10^10	
Cavity gradient	MV/m	35 (±20%)		33.4 MV/m	
Cavity production yield	%	9(55.4 WIV/III	
Beam current	mA	5.	-	> 5.8	DESY, KEK
	IIIA				
Number of bunches		1312		1312	DESY
Bunch charge	nC	3.2		3	
Bunch interval	ns	55		333	
Beam pulse width	μs	73		800	DESY, KEK
RF pulse width	ms	1.65		1.65	DESY, KEK, FNAL
Repetition	Hz	5		10	DESY
<u>DR</u>					
Horizontal Emittance(ε_x)	nm	0.4	0.4	0.34	MAX-IV
Vertical Emittance (ε_y)	pm	2	2	<2	SLS, Australian LS, Diamond LS
Normalized Emittance($\gamma \epsilon x/\gamma \epsilon y$)	µm/nm	4/20	4/20	4/15	ATF
Fast lon instability					SuperKEKB
Electron Cloud Instability					SuperKEKB/CesrTA
•	ns	< 6.15	< 3.07	2.2	ATF
Kicker Rise Time	-		±10	±10	ATF
	kV	± 10			
Kicker Voltage	kV	± 10	0.0007	0.00035	AIF
Kicker Voltage Kicker Voltage stability		0.0007	0.0007	0.00035	ATF
Kicker Voltage Kicker Voltage stability Kicker Frequency	kV MHz		0.0007 2.7	0.00035 3.25	ATF
Kicker Voltage Kicker Voltage stability Kicker Frequency Fast Kicker extraction test		0.0007			
Kicker Voltage Kicker Voltage stability Kicker Frequency Fast Kicker extraction test <u>BDS</u>	MHz	0.0007		3.25	ATF ATF
Kicker Voltage Kicker Voltage stability Kicker Frequency Fast Kicker extraction test <u>BDS</u> ATF2 beam size (σ_y^*)	MHz nm	0.0007 1.8 37			ATF ATF ATF2
Kicker Voltage Kicker Voltage stability Kicker Frequency Fast Kicker extraction test <u>BDS</u> ATF2 beam size (σ_y^*) ILC beam size	MHz nm nm	0.0007 1.8 37 7.7	2.7	3.25 ≤41	ATF ATF ATF2 ATF2
Kicker Voltage Kicker Voltage stability Kicker Frequency Fast Kicker extraction test <u>BDS</u> ATF2 beam size (σ_y^*) ILC beam size Feedback position stability	MHz nm	0.0007 1.8 37 7.7 12	2.7	3.25 ≤41 4	ATF ATF ATF2
ATF2 beam size (σ_y^*)	MHz nm nm	0.0007 1.8 37 7.7	2.7	3.25 ≤41	ATF ATF ATF2 ATF2
Kicker Voltage Kicker Voltage stability Kicker Frequency Fast Kicker extraction test <u>BDS</u> ATF2 beam size (σ_y^*) ILC beam size Feedback position stability	MHz nm nm % of beam	0.0007 1.8 37 7.7 12	2.7	3.25 ≤41 4	ATF ATF ATF2 ATF2 ATF2 ATF2