Positron Target Issues 2020.12.3 IDT-WG2 Sources Subgroup

K. Yokoya

2020/12/3 Sources IDT-WG2

Two Schemes

- Undulator Scheme (baseline) and
- e-Driven Scheme (backup)

 Latest general report as of May 2018 <u>http://edmsdirect.desy.de/item/D0000001165115</u>

Undulator Scheme

- TDR (Design for Ecm=500 GeV)
 - Beam specification
 - ✓ Electron beam structure: 3.2 nC x 1312 bunches x 5Hz
 - ✓ Photons from 147m undulators (average ~10 MeV)
 - ✓ Positron yield > ~ 1.5 per incident electron (Ee=150GeV)

➤Target

 ✓ Ti alloy (Ti6Al4V) wheel, diameter 1m, rotating at 2000 rpm (tangential speed 100m/s)

✓ Thickness 0.4 X₀ (14mm)

✓ In vacuum (~10⁻⁶ Pa)

 \checkmark Water cooling with vacuum seal by magnetic fluid

➢Optical Matching Device

✓ Flux concentrator

✓ <0.5T on target, >3T at 2cm, 0.5T at 14cm

✓ Flat-top length ~1ms

Capture cavity

✓ 1.3GHz Normal-Conducting, SW followed by TW up to 400MeV

Failure of the TDR Design

- Target
 - ➤Vacuum leak through the magnetic fluid
 - ✓ Experiment at LLNL
 - R&D stopped soon due to US budget problem
 - \checkmark \rightarrow We do not know the real scientific answer
- Flux concentrator
 - ➤A model designed at LLNL
 - Later, time-dependence of the field pointed out by computer simulation
 - > Due to the skin depth effects at low frequency
- Other problems
 - Photon dump (up to 300kW, water cooling): The life of the Ti window tuned out to be only several days due to "dislocationper-atom" problem
 - \checkmark Not treated here (\rightarrow beam dump group)

Flux Concentrator

- Positron capture device is flux concentrator in TDR
- 2 problems
 - - Due to the frequency dependence of the skin depth ~ a few mm (~100Hz)
 - The shower from the target hits the tip of beam aperture with Ee=125GeV
- The first problem is quite serious. Almost give up flux concentrator

2020/12/3 Sources IDT-WG2

New Design of Target

- Parameter changes
 - ➢ Project scale also changed Ecm=500→250GeV
 - ➢Thus, max electron energy 125GeV
 - ➤To keep the positron yield, the undulators made longer, 147m → 231m
- Target design change
 - ➤Target thickness 0.4 → 0.2 X₀ (7mm, energy deposit ~2kW)
 - \succ Water cooling \rightarrow radiation cooling
 - ✓ Magnetic bearing

Latest Parameters of Undulator Scheme

electron beam energy	${\rm GeV}$	126.5	125	150	175	250
undulator active length	m	231		147		
undulator K		0.85		0.8	0.66	0.45
photon yield per m undulator	$\gamma/({ m e^-m})$	1.70		1.52	1.07	0.52
photon yield	$\gamma/{ m e}^-$	392.7		223.9	157.3	76.1
photon energy $(1^{st} harmonic)$	${ m MeV}$	7.7	7.5	11.3	17.6	42.9
average photon energy	${ m MeV}$	7.5	7.3	10.4	13.7	26.8
average photon beam power	kW	62.6	60.2	48.8	45.2	42.9
photon bunch energy	J	9.6	9.2	7.4	6.9	6.5
electron energy loss in undulator	GeV	3.0	2.9	2.3	2.2.	2.0
Ti6Al4V target thickness	$\mathbf{m}\mathbf{m}$	7	14.8		14.8	
energy deposition per photon in target	${ m MeV}$	0.23	0.7	0.8	1.0	1.4
relative energy deposition	%	3.1	9.0	8.0	7.3	5.3
average power deposited in target	kW	1.94	5.4	3.9	3.3	2.3
energy deposition per bunch	J	0.3	0.83	0.60	0.50	0.35
space from middle of undulator to target	m	401	570		500	
photon beam spot size on target (σ)	$\mathbf{m}\mathbf{m}$	1.2	1.72	1.21	0.89	0.50
PEDD in target per bunch	J/g	0.65	0.40	0.49	0.66	1.19
PEDD in target per pulse (100 m/s)	J/g	61.0	43.7	41.0	42.4	45.8
polarization of captured positrons at DR	%	29.5	30.7	29.4	30.8	24.9

Radiation-Cooling Target

- Avoid cooling water inside
- Radiation cooling $\sim^{2} \sigma T^{4}$
- Heat transfer
 - Ti \rightarrow Cu : conduction
 - rotating Cu
 → sitting Cu : radiation
 - sitting Cu \rightarrow water
- Rotation axis supported by magnetic bearing
 - In vacuum
 - No magnetic fluid

Sketch: Felix Dietrich

Radiation Cooling Issues

Issues

- \succ Heat transfer from Ti \rightarrow rotating Cu \rightarrow Sitting Cu
- ➢Heat property of the joint
- Mechanical strength of joint (200 rpm)
- Magnetic bearing
- Eddy current if magnetic field at the target non-negligible
- Must prove feasibility by ~ end of JFY2022 (Mar.2023)
- Full prototype seems difficult
- What sort of partial test needed?
 - Sub-sector (no rotation) test possible? Useful?

QWT (Quarter Wave Transformer)

- To replace Flux concentrator
- Beam aperture r ~ 11mm
- Peak field 1.04T (Plus matching solenoid 0.5T)
- Can be DC (no skin depth problem)
- Possible problem is the positron yield

Used QWT was based on Wei Gai and Wanming Liu (ANL) model. Dimensions were taken from M. Fukuda (KEK) AWLC2017 talk.

Positron Yield

- Positron yield $\eta(e+/e-) = 1.5$ desired
- The May.2018 report quoted a number η(e+/e-) = 1.3 with the QWT in the previous page, maybe marginally OK.
- But a more accurate calculation showed only 0.8
- This is the most urgent problem of the undulator scheme
- Field of QWT can be improved?
- A different focusing device?
 - FC long pulse?
 - Pulsed solenoid?
 - Plasma lens?
- All these must come with accurate yield calculation

e-Driven Scheme

- Target load can be relaxed by adopting a different pulse structure:
- Pattern on the right is repeated 20 times with ~3.3ms interval
- Total length 3.3ms x 20 = 66ms
- Time for damping in DR is 200-66=134ms

Latest published design Nucl. Instr. Meth. A. 163134, 2019

https://doi.org/10.1016/j.nima.2019.163134

Target

- Water cooling with vacuum seal by magnetic fluid (same as the initial design for undulator scheme in this respect)
- W or W-Re. ~5X₀ (16mm)
- Rotating speed 5m/s at the rim (diameter 0.5m, 225 rpm)
- Energy deposit on the target ~20kW
- Many calculations have been done with the help by Rigaku
 - > Heat
 - Stress
 - Cooling water
- Prototype tests also have been done
 - ➤ Radiation test → choice of magnetic fluid⁻
 - Rotation test with the fluid (no water)
- Remaining Issues
 - Relatively in good shape
 - More accurate stress calculation
 - Need to know more about the material property
 - Experiment with cooling

Flux Concentrator

- Peak field 5T
- Front aperture 16mm (diam.)
- Pulse length flat-top ~0.5μs
- Ohmic loss 14kW
- Design by Pavel Martyshkin (BINP) based on the BINP experience

Remaining issue

- Distance from target to FC must be settled (1-5 mm)
- Cooling system
- Is a prototype needed ?
 - ✓ If so, need a power source (expensive)
- Specification similar to that for CLIC

Capture Cavity

- Very high current in a pulse
 - ➤e+ current in DR : 3.2nC / 6.16ns = 0.52 A
 - \succ Margin x 1.5 \rightarrow 0.78 A
 - ➢Including electrons captured in the neiboring bucket x 2 → 1.56 A
 - > May be more due to the loss from capture to DR entrance
- Special pulse structure
 ▶80 ns gap in 474 ns pulse
- Very high beam-loading
- We are designing an APS (Alternating Periodic Structure) cavity

• Help by experience people desired