$H\to \tau^+\tau^-$ CP Violation Analysis for SiD

L. Braun J. Brau

University of Oregon

December 9, 2020

L. Braun J. Brau $H \rightarrow \tau \tau$ CP Violation for SiD

1/13

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

Tau-Based Analysis of Higgs CP Violation

- General methodology: extract **polarimeter vector** from analyzing tau decay; find **azimuthal angle** between τ^+ and τ^- polarimeter vectors
- Polarimeter vectors vary with tau decay; $\tau^{\pm} \rightarrow \pi^{\pm} \nu_{\tau}$ (below) and $\tau^{\pm} \rightarrow \pi^{\pm} \pi^{0} \nu_{\tau}$ are the simplest to analyze, but using higher-multiplicity decays would allow for more events to be used

э

CP Sensitivity Estimation

- To estimate CP mixing angle precision, need a unified CP sensitivity metric
- ILD's method includes binning for **CP** sensitivity based off of **NN** predictions for tau-vs-bkg and tau decay paths (more confident prediction = more sensitive)
- The higher-multiplicity tau tagging system uses a different NN setup, but can still help inform CP sensitivity
- Once events are binned across decay path, NN prediction, and leading charged particle energy, we can extract a single CP sensitivity parameter, and similar-sensitivity bins can be merged for simultaneous cosine fitting
- Result shown here uses combined energy-based and confidence-based asymmetry. Events are sorted by CP sensitivity (average of these two metrics)

NN Prediction Distributions - Tau vs Background

- NN prediction confidence was calculated as the **highest output** from a NN output node minus the **second-highest output**
- Background events had lower NN confidences than signal events, allowing for improved background rejection

NN Prediction Distributions - Tau Decay Paths

- NN prediction confidence was calculated as the **highest output** from a NN output node minus the **second-highest output**
- Different tau decay paths had different confidence distributions which strongly correlated with overall tagging performance
- Incorrectly-labeled tau decays had lower NN confidences, allowing for better binning for CP sensitivity

NN Prediction Distributions - Tau Decay Paths

- NN prediction confidence was calculated as the **highest output** from a NN output node minus the **second-highest output**
- Background events erroneously labelled as taus had similar prediction distributions to true taus, but a better cutoff for the tau-vs-bkg NN should improve background rejection enough

Correct Label

Background Contamination

Importance of Removing Incorrectly-Tagged Taus

• Negligible asymmetry for events assigned incorrect decay path for one or both taus motivates stricter tau decay path cuts

Optimized NN Cutoffs

- Significance-maximizing $(S/\sqrt{S+B})$ NN prediction confidence cuts weighted by cross section for both tau-vs-bkg and tau decay path NNs
- Tau-vs-bkg optimization gave a cutoff at about 5.095, which agrees with naive cut estimates
- Tau decay path NNs invariably yielded **very lax cuts**. This is likely due to the much lower number of mislabelled tau decay paths compared to correctly-labelled ones, meaning that signal efficiency is prioritized over background rejection here

Decay Path	Cutoff
π	0.308
ρ	0.169
l	0.000
a _{1,1p}	0.186
a1 30	0.000

Confidence-Based Asymmetry Binning

- Groups of 400 events each sorted by NN prediction confidence showed variable dependence of asymmetry on NN prediction confidence
- Double π events and $\pi \rho$ events showed strongest asymmetry improvement at high NN prediction confidences of possible decay paths shown here
- Overall, the confidence-based asymmetry statistic is a sufficient predictor of CP sensitivity to be used in CP sensitivity estimates

Review of Energy-Based Asymmetry Binning

- Previously had established methods for CP sensitivity estimate based on leading charged particle energy based on the literature
- Events with higher leading charged particle energies have higher asymmetries for most decay paths, irrespective of NN prediction confidence

.∋⇒

Correlation Between Leading Particle Energy and NN Prediction Confidence

 Due to limited signal sample sizes, a final CP sensitivity must be extracted from separate asymmetry estimates. The variable correlation between energy- and confidence-based methods is small enough that using both is still worthwhile

Double-Binned Expected Asymmetry Calculation

- Events binned separately by leading charged particle energy and NN prediction confidence for each decay path
- Asymmetry calculated based on cosine fit to groups of 400 events for each binning process, each event assigned expected asymmetry (A^{aa}) equal to average of fitted asymmetries
- Asymmetries calculated from groups of 1000 events binned based on expected asymmetry roughly agreed with expected asymmetry distribution

Expected and Actual Double-Binned Asymmetry

Asymmetry distributions skewed toward high asymmetry values

- Improve method for calculating expected asymmetry from energy-based asymmetry and confidence-based asymmetry
- Using background NN prediction confidence and leading charged particle energies, simulate repeated cross-section-weighted "experiments" to include high background contamination in asymmetry calculation
- **Simultaneous cosine fitting** based on expected asymmetry: How to group events for simultaneous fitting? (ILD uses three bins and a minimum asymmetry cut)
- CP mixing angle precision estimates

≡ nar

・ 同 ト ・ ヨ ト ・ ヨ ト