Study of high time-resolution calorimeter using ILD detector simulation (Preliminary results)

M. Kuhara^A,

T. Suehara^A, K. Kawagoe^A , T. Yoshioka^B, D. Jeans^C

(Kyushu Univ.^A, RCAPP^B, KEK IPNS^C)

ILD and ECAL

ILD (International Large Detector)

- Tracking detector :TPC + sillicon
- ➢ Particle ID @TPC
 - \rightarrow energy loss (dE/dx) and momentum

SiW-ECAL

- Sandwich calorimeter (30 layers)
- > Detection layers: Si (Pixel size : $5 \times 5 mm^2$)
- > Absorption layers: Tungsten (inner: 2.1 mm thick, outer: 4.2 mm thick)
- > 24 radiation length in total

Particle ID / Time resolution of LGAD

Depletic

Region

٨

High field

Particle ID of hadrons

- \triangleright Region where we can't identify particle by only measurement of dE/dx and momentum.
- \blacktriangleright Better separation power can be obtained by adding ToF than only dE/dx.
- \blacktriangleright Possible to separate $\pi/K/p$ up to 3~5 GeV by 50 ps ToF with dE/dx at TPC

LGAD (Low Gain Avalanche Detector)

- \blacktriangleright A silicon sensor with avalanche amplification mechanism
- Higher timing resolution
 - \geq 26 ps timing resolution achieved (study of ATLAS group)
- How LGAD contributes to time resolution and • particle identification when it is used as part of ECAL
- Optimization of layer structure with LGAD in ECAL

Simulation and time information

Data

 \succ single particle PDG=211 (π^+) and PDG=321(K^+)

ILD

- > ILD detector simulation
- ➢ ILCSoft : v01-19-04
- ➤ Energy : 1 , 2 , 5 , 10 GeV
- > 10000 events each
- \succ Hits at the ECAL barrel are studied
- \succ Ignore hits with arrival time > 12 ns

(to remove slow component)

Time

- Investigate arrival time of each hit
- > Errors due to sensor time resolution are not considered
- \blacktriangleright The distance from the IP to ECAL is about $1.8~{
 m m}$
- \rightarrow The time from IP to ECAL is about 6.1 ns
- The time distribution is reasonable

Calculation method of mass

Result : mass of π^+ and K^+ [each hit]

ILD meeting

156051

0.1597

0.04874

105869

0.5013

0.0156

126196

0.1914

103.9/49

81204 0.5289

0.1157

222.7/51

 1482 ± 8.5

 0.5479 ± 0.0007

 0.1129 ± 0.0009

1.2

 2596 ± 11.4

 0.3163 ± 0.0007

 0.1582 ± 0.0007

0.362

358.3/9

63.21 / 13

 9631 ± 40.3

 0.1517 ± 0.0001

 0.02015 ± 0.00010

1.128e+04 ± 5.294e+01

 0.006383 ± 0.000029

1.2

 0.4981 ± 0.0000

 K^+

Comparison of the hit time and the propagation time

- Comparison of the hit time and the propagation time calculated from the path length and the true mass
- Distribution obtained by (propagation time) (hit time)

- The value of peak is 2 ps smaller than true value.
- Width of time difference : about -20 ps to 10 ps
- This time deviation can be a possible source of the bad separation of π^+ and K^+ mass at higher energies.

Contamination of secondary particles

- Select hits directly induced by π^+ and K^+ with MC information (blue) / all hits (yellow)
- Need to think of ways to separate hits of secondary particles.

Mass and layer : π^+ and K^+ 2 GeV / 5 GeV

ILD meeting

Yoke/ Muon

Detector SLAB

Averaged mass of each cluster

• Smaller 80% of masses of hits contained in one event are extracted,

and average masses to obtain a distribution as the mass of the event (without cut of secondary particle)

- Threshold : 0.4 GeV \rightarrow Calculated the rate of events that could be correctly identified
- π^+ (true value about 0.139 GeV) mass smaller than 0.4 GeV,
 - K⁺ (true value about 0.494 GeV) mass larger than 0.4 GeV is considered to be correctly identified.

π^+	1ps	10ps	20ps	50ps	
1 GeV	86.95	86.99	86.99	87.03	
2 GeV	97.16	97.18	97.28	97.35	
5 GeV	79.27	80.38	81.86	86.49	
10 GeV	65.62	74.77	87.59	99.74	[%]

K^+	1ps	10ps	20ps	50ps	
1 GeV	46.29	46.29	46.29	46.25	4
2 GeV	79.68	79.65	79.59	79.46	
5 GeV	88.14	87.79	79.65	54.57	
10 GeV	83.45	68.12	40.56	1.15	[%]

- π^+ and K⁺can be identified with good precision 10 ps ~ 20 ps : up to 5 GeV 50 ps : up to 2 GeV
- Threshold optimization is needed

ILD meeting

Summary

- LGAD can improve the timing resolution of ECAL.
- Particle ID by ToF with single π^+ and K^+ is investigated.
- Mass of each particle is obtained by averaging masses calculated with individual hits.
- π^+ and K⁺ can be identified by ToF up to 5 GeV with 10-20 ps timing resolution of hits and up to 2 GeV with 50 ps resolution.

Next step

- Optimize averaging method over hits
- Calculate mass with reconstructed momentum
- Investigate effect to the resolution and particle ID by combining LGAD with ECAL
- Study LGAD prototype

BACKUP

π^+ : mass vs layer number

2 GeV

10 GeV

K⁺ : mass vs layer number

I GeV

2 GeV

10 GeV

ILD meeting

Mass and layer : $\pi^+ and K^+$ 5 GeV

ILD meeting

Yoke/ Muon

Detector SLAB

イベントごとの質量

ヒットごとの質量分布:π⁺(139 MeV)

2 GeV 1 GeV ヒットごとの質量 156051 10000 Entries 17838 Entries 600 0.1597 Mean Mean 0.2712 使用したデータ 0.04874 Std Dev Std Dev 0.1281 χ^2 / ndf 63.21 / 13 χ^2 / ndf 40.62 / 11 8000 500 Constan 9631 ± 40.3 Constant 586.9 ± 10.4 Mean 0.1517 ± 0.0001 Mean 0.1835 ± 0.0006 single particle PDG=211 (π^+) Sigma 0.02015 ± 0.00010 Sigma 0.03111 ± 0.00084 400 6000 1,2,5,10 GeV 300 4000 PDG=211でカット 200 سالاسالال 2000 > 分布のピークの値は、理論値より 100-わずかに大きい 0.05 0.1 0.15 0.2 0.25 0.35 0.3 0.1 0.2 0.5 mass of pion 2 GeV [GeV] mass of pion_1GeV [GeV] ▶ 2 GeVは最も理論値に近く、 10 GeV 5 GeV テールも小さい 126196 Entries Entries 196012 ▶ 1 GeVではテールが目立つ 0.362 2500 Mean Mean 0.2007 5000 Std Dev 0.1914 Std Dev 0.101 χ^2 / ndf 103.9/49 χ^2 / ndf 316.8/41 →エネルギーが小さく、散乱して Constan 2596 ± 11.4 Constant 5166 ± 17.8 2000 4000 Mean 0.1833 ± 0.0003 Mean 0.3163 ± 0.0007 Sigma Sigma 0.07921 ± 0.00029 0.1582 ± 0.0007 すぐに止まってしまう 1500 3000 ▶ 5,10 GeVではピーク幅が大きい 1000 2000 →ピクセルサイズを考慮していな 500 1000 いのが原因の一つではないか 0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.2 0.3 0.4 0.5 0.6 0.8

mass of pion 5 GeV [GeV]

ILD meeting

mass of pion 10 GeV [Ge

ヒットごとの質量分布:*K*⁺(494 MeV)

