

$\nu \bar{\nu} H$: MY FIRST STEPS WITH THE 2020 MC SAMPLE

ILD Analysis/Software Meeting

Jean-Claude Brient, Jonas Kunath (LLR)

OUTLINE

$\nu\bar{\nu}H$: My first steps with the 2020 MC sample

Disclaimer :

Most differences probably originate in my incomprehension.

https://github.com/kunathj/ILD_ vvH_DBD_vs_MC2020

- 1. Research question
- 2. Expectations & getting started
- 3. Sample comparison
- 4. Conclusion

${\cal G}_{HZZ}$ - WHAT CAN BE GAINED?

Extracted from Higgsstrahlung events at a $\sqrt{s} = 250$ GeV.

- $Z \to \mu^+ \mu^-, Z \to e^+ e^-$: Golden channels. Recoil mass method, already studied elsewhere.
- $Z \to \tau^+ \tau^-$: Tagging on the τ is complicated.
 - Large τ decay opening angle (low E_{τ}).
 - Divers environment from the Higgs decay.
- $Z \rightarrow \nu \bar{\nu}$:
 - Significant WW-fusion contribution in $\nu \bar{\nu} H$.
 - Cannot tag event on ν .
 - + Only Higgs boson (and beam overlay) present in event.
 - + $6 \times$ higher cross section.

 $\nu \bar{\nu} H$

- $\sigma_{\nu\bar{\nu}H}$ with contributions from both Higgsstrahlung and WW-fusion.
- Their relative size varies with the beam polarisation.
- Similar distributions for $\sqrt{s} = 250$ GeV.
- Idea : Extract the combined cross section
 (→ production mode agnostic selection).
- WIP : Determine the benefit of this observable for G_{HZZ}, G_{HWW} from a global fit, including the correlations with e.g. $\sigma_{WW\text{-}fusion \rightarrow \nu \bar{\nu} b \bar{b}}$ (using SFitter).

EXPECTATIONS

- Smoother distributions due to increase sample size (×10 $\nu \bar{\nu} H$, ×60 $\mu^+ \mu^- H$).
- Great improvement for rare (Higgs decay) modes from exclusive samples.
 - $\rightarrow~$ Machine learning.
- Basically a drop-in replacement for the DBD $\sqrt{s} = 250$ GeV samples.
 - Detector (reconstruction) not altered too much.
 - Machine parameters and simulation similar.

GETTING STARTED

- Switch out file paths (e.g. at kek-cc): /group/ilc/soft/samples/mc-dbd/ild/dst-merged/250-TDR_ws/ → /group/ilc/grid/storm/prod/ilc/mc-2020/ild/dst-merged/250-SetA/
- Some changes in file naming : Pnnh \rightarrow Pn1n1h, Pn23n23h.
- Unrealistic to store full sample locally : $\approx 50 \text{ GB}$ for $\nu \bar{\nu} H$ alone.
- Reduced statistics for background processes up to now?
- Start by comparing the (1D) signal distributions for my BDT input variables.

6

COMP

COMPARISON - # PANDORA PFOS IN A $u ar{ u} H$ EVENT

A shift towards higher values and more smeared out : $\gamma\gamma \rightarrow \text{low-}p_T$ hadron background now increased (to ≈ 1.6 events/bunch crossing).

now increased (to ≈ 1.6 events/bunch crossing). The distributions of only the actual Higgs decay products are similar.

 $\gamma \gamma \rightarrow \text{low-} p_T$ hadron background

A shift towards higher values and 0.020 more smeared out :

COMPARISON - # PANDORA PFOS IN A $\nu \bar{\nu} H$ EVENT

GLOBAL VARIABLES

SAMPLE COMPARISON

OVERLAY COMPOSITION

Frequency and size of the overlay increased, composition altered.

OVERLAY SHAPE

Frequency and size of the overlay increased, composition altered.

OVERLAY SHAPE - LOG SCALE

Frequency and size of the overlay increased, composition altered.

OVERLAY ENERGY

On average ≈ 10 GeV. $E_{\rm Higgs}^{\rm mean} \approx 130$ GeV.

OVERLAY ENERGY

On average ≈ 10 GeV. $E_{\text{Higgs}}^{\text{mean}} \approx 130$ GeV.

Jonas Kunath — vv H: DBD vs MC2020

ISOLATED LEPTONS

Using the IsolatedLeptonTaggingProcessor with DBD weights.

Isolated lepton tagging: $H{\rightarrow}\mu\mu$

BRANCHING RATIOS

Differences (red) seem to be larger than statistical uncertainty.

#PFOS PER HIGGS DECAY MODE

Increased overlay makes it harder to use *global* information.

#PFOS PER HIGGS DECAY MODE

Increased overlay makes it harder to use global information.

SAMPLE

CONCLUSION

- + Smoother distributions due to increased sample size.
- + Reconstruction of the Higgs boson itself is comparable.
- Overlay should not be ignored (any more) by me :
 - Replace global variables by a more local version (e.g. $\#PFOs \rightarrow \#PFOs$ in fat jet(s)) or
 - Have a customized, stricter particle definition that reduces the overlay within the analysis and/or
 - Adapt the selection cuts and retrain the MVA tools.
- ! Many thanks to all who are involved in providing the (new) samples!

CONCLUSIO

TWO TYPES OF VARIABLES

It is important to assign each observed momentum to the right parent particle.

Higgs-only variables

- E.g. M_{H}^{vis} , recoil to M_{H}^{vis} .
- But also number of charged hadrons.
- Differ between the Higgs decay modes.
- Same distr. for all four $Z \rightarrow l \bar{l}$ samples.
- Distributions taken from the *reference* sample.

Z-only variables

- E.g. $M_{\rm recoil}$, M_Z .
- C.f. recoil mass technique.
- Independent of the Higgs boson decay (model).
- Distributions taken from Monte Carlo (MC) generated data.

TWO TYPES OF SAMPLES

Counting sample

- Count the number of events in the samples.
- Three samples are built : $Z \rightarrow e^+e^-$, $\tau^+\tau^$ and $\nu_l \bar{\nu}_l$.
- Event selection based on both Z-only and Higgs-only variables.
- Z-only selection efficiency from MC.
- Higgs-only sel. eff. from reference sample.

Reference sample

- Extract the fraction of events passing a (Higgs-only) selection.
- Employed Higgsstrahlung events : $Z \rightarrow \mu^+ \mu^-$.
- Event selection based on just the Z-only variables.
- Selection efficiency from MC.

BACK-U

UNCERTAINTY ON THE $\nu \bar{\nu} H$ CROSS SECTION

$$\begin{aligned} \sigma_{\nu\bar{\nu}H} &= \frac{N_{\nu\bar{\nu}H}}{L} = \frac{N_{\nu\bar{\nu}H}}{BR(Z \to \nu\bar{\nu})\epsilon_Z^{\mu,e}\epsilon_H L} \\ \frac{\Delta\sigma_{\nu\bar{\nu}H}}{\sigma_{\nu\bar{\nu}H}} &\approx \sqrt{\left(\frac{\Delta N_{\nu\bar{\nu}H}}{N_{\nu\bar{\nu}H}}\right)^2 + \left(\frac{\Delta\epsilon_H}{\epsilon_H}\right)^2} \\ &= \sqrt{\frac{D_{\nu\bar{\nu}H}}{(N_{\nu\bar{\nu}H})^2} + \frac{D_Z^{\mu,e}}{(N_Z^{\mu,e})^2} + \frac{D_{H|Z}^{\mu,e}}{(N_{H|Z}^{\mu,e})^2} - \frac{2D_{H|Z}^{\mu,e}}{N_{H|Z}^{\mu,e}N_Z^{\mu,e}}} \end{aligned}$$

Includes the systematic uncertainty from the selection (e.g. cut on $N_{\rm ch.\ hadr.}$). Assumption : Background distributions well known.

Jonas Kunath - vvH: DBD vs MC2020

THE $\nu \bar{\nu} H$ BDT

Up to now trained an XGBoost BDT with the DBD MC samples. The criterium for the variables is to :

Only use Higgs boson remnants, nothing from the recoiling Z boson

- + $\delta\sigma_{H\nu\bar{\nu}} \approx 3.1\%$ achieved so far.
- $N_{charged hadrons}$, $N_{neutral hadrons}$, N_{γ} , N_e , N_{μ} , $N_{isolated leptons}$.
- $M_{\rm Higgs}(=M_{\rm vis})$, $M_{\rm Higgs-recoil}$, $\cos(\theta_{\rm miss})$.
- principle thrust, z-component of thrust axis, major thrust, minor thrust, sphericity, aplanarity, E^{max}_{isolated lepton}, cos(θ_{isolated lepton}).

and indep. of the Higgs production (WW-fusion, Higgsstrahlung).

- + $\delta\sigma_{H
 uar{
 u}} pprox 3.8\%$ achieved so far.
- $N_{charged hadrons}$, $N_{neutral hadrons}$, N_{γ} , N_e , N_{μ} , $N_{isolated leptons}$.
- $M_{\rm Higgs}(=M_{\rm vis})$.

THE ILD DBD 250 GEVDATA SET

$\sqrt{s} = 250 \text{ GeV}$	cross section		$N_{ m Gen}$	
e^{-} polarisation	left	right	left	right
$\mu^+\mu^-H$	$17.1~{ m fb}$	11.0 fb	17.1k	11.0k
e^+e^-H	$17.6~{ m fb}$	11.2 fb	17.6k	11.2k
$\tau^+\tau^-H$	$17.1~{ m fb}$	11.0 fb	17.1k	11.0k
$ u_l \overline{\nu}_l H$	$128.6~{ m fb}$	$65.1~{\rm fb}$	0.13M	65.1k
2f_h	129.15 pb	71.27 pb	$1.75\mathrm{M}$	1.43M
2f_1	46.51 pb	$40.70~{ m pb}$	2.63M	2.13M
$4f_h$	28.66 pb	966.2 fb	2.50M	$0.24\mathrm{M}$
4f_1	8.89 pb	$1.28~{ m pb}$	$2.25\mathrm{M}$	$0.35\mathrm{M}$
4f_sl	31.12 pb	$1.42~{ m pb}$	4.43M	0.36M
$q\bar{q}H$	$346.0~{\rm fb}$	222.0 fb	$0.35 \mathrm{M}$	$0.22 \mathrm{M}$
sum	244.86 pb	115.95 pb	14.09M	4.83M

- Large Standard Model event generation and detector simulation
 - \rightarrow for Detailed Baseline Design (DBD).
- A particle flow algorithm (PandoraPFA) was run on simulated events in 2013.
- Process luminosities between $\sim 20 \text{ fb}^{-1}$ (Bhabha) and 1000 fb^{-1} (Higgs).

BACK-UI