
Linear Collider Physics 
Analysis in Jupyter



Let's get started

• Log on to your site
• For OSG: ssh -L 80xy:localhost:80xy login.snowmass21.io #replace the server name for your site
• x=0 y=9 is mine.
• Pick your own x and y.

• Download julia
• wget https://julialang-s3.julialang.org/bin/linux/x64/1.5/julia-1.5.3-linux-x86_64.tar.gz
• tar xzf julia-1.5.3-linux-x86_64.tar.gz
• julia-1.5.3/bin/julia

• Start julia – this is the REPL (read-eval-print loop)
• Powerful support for different modes: e.g., shell, package, julia, C++ modes
• ] add IJulia # ] starts the package mode
• build IJulia
• Backspace to get back to julia mode

• Start the notebook
• On your laptop

• using IJulia

• notebook()

• On OSG/KEK/NAF
• source /cvmfs/belle.cern.ch/tools/b2setup release-04-02-08

• jupyter notebook --no-browser --port=80xy # use the same x and y from when you logged in.

https://github.com/jstrube/LC_with_Julia_examples


Running the notebooks

• Run the notebooks from 
here: https://github.com/jstrube/LC_with_Julia_examples/

• You will see that it won't run!

• Not all necessary packages have been installed. The error message will tell you 
what to do. Click on the + symbol to add a new cell and copy and paste the code 
that the error message suggests.
• This is how you add new packages.

• Add all packages that you see in the notebook (using xxx)
• If you follow in the REPL instead of the notebook, replace "StatsPlots" with "UnicodePlots"

• Run again
• You will see messages like "Precompiling...". This will take a while, but it's only necessary 

after installing or updating packages.

• In the meantime, let's move on with the slides.

https://github.com/jstrube/LC_with_Julia_examples/


Program for today

• https://github.com/jstrube/LC_with_Julia_examples/blob/main/FirstSteps.i
pynb
• Introduction for how to open files and read a few collections
• If you have worked with LCIO before, the operations should be very familiar

• https://github.com/jstrube/LC_with_Julia_examples/blob/main/NTupleExa
mple.ipynb
• A simple example for how to read an LCIO file and write out a DataFrame for data 

analysis offline, including how to make cuts.

• https://github.com/jstrube/LC_with_Julia_examples/blob/main/DL_Calo.ip
ynb
• An example for how to use the deep learning library Flux, using a simple calorimeter 

calibration
• A Gaussian distribution can be fit to the calibrated distribution.

https://github.com/jstrube/LC_with_Julia_examples/blob/main/FirstSteps.ipynb
https://github.com/jstrube/LC_with_Julia_examples/blob/main/NTupleExample.ipynb
https://github.com/jstrube/LC_with_Julia_examples/blob/main/DL_Calo.ipynb


Julia – the "ju" in Jupyter

• Support for multithreaded, concurrent, and distributed processing
• Unicode support for variables
• Interactive programming
• Multi-dimensional arrays (like numpy, but built-in)
• Rich ecosystem for technical computing

• Statistics: Distributions.jl, Turing.jl (probabilistic programming), …
• Differential Equations: DifferentialEquations.jl, SciML.ai
• Deep Learning: Flux.jl, Knet.jl
• Plotting: Plots.jl (with different backends), PyPlot.jl (wrapper around matplotlib)

• Salespoint for me: Allows me to explore the data, and when I need a fast 
function for serious work (e.g. a new calorimeter clustering), I can write it 
in the same language I use for interactive exploration.



First steps in Julia

• Julia supports unicode: Enter \mu<TAB>
• UTF-8 is fully supported, but not everything has a \-shortcut

• Full support for matrices
• X = randn((20, 10)) # makes a 20x10 matrix
• Y = X' # transposes the matrix

• Iterations and printing similar to python
• for x in 0:10 println(x) end
• Note: no ":", but "end" to delimit blocks

• Functions don't need type parameters (but you can use them)
• F(x) = sin(x) is a function
• function F(x::Int64) sin(1.5x) end is another function with the same name.
• Return is optional. The value of the last statement in the function is returned. 

function F(x::Float64) return sin(0.5x) end is also fine.



Some noteworthy differences to languages 
you may be familiar with
• 1-based indexing by default

• Or, random, if you want

• Structs, yes, but no member functions
• Multiple dispatch instead

• Use the object as the first parameter of the function instead.
Example: C++: vec.size() Julia: length(vec)

• No semicolon required, no indentation or {} to delimit blocks
• if … end; for … end, function … end

https://github.com/giordano/RandomBasedArrays.jl
https://www.youtube.com/watch?v=kc9HwsxE1OY


Further information about Julia

• Starting point: https://julialang.org
• Documentation: https://docs.julialang.org/en/v1/

• Note that things that run in v1.0 are guaranteed to run in any v1.x, but do choose the 
latest version to get more features.

• Other learning resources: https://julialang.org/learning/

• The recent community conference online has a good mix of 
introductory and overview 
material https://www.youtube.com/playlist?list=PLP8iPy9hna6Tl2UH
Trm4jnIYrLkIcAROR

https://julialang.org
https://docs.julialang.org/en/v1/
http://Ohttps:/julialang.org/learning/
https://www.youtube.com/playlist?list=PLP8iPy9hna6Tl2UHTrm4jnIYrLkIcAROR

