e+e- -> Z gamma, first look at the new 250 GeV sample

Takahiro Mizuno 2020. 12. 16.

Simulation Setup

Full simulation (ILCSOFT version v02-02)

- Using new **2f_z_l** samples
- E_{CM} of e+e- is 250 GeV.
- Signal sample: $e^+e^- \rightarrow \gamma Z, Z \rightarrow \mu^+\mu^-$
- Several samples are merged, and overall number of events are below.
 eLpR: 208868
 eRpL: 200540

Sometimes comparing with conventional IDR-L samples, in which photon energy and phi biases were reported, though whose E_{CM} of e+e- are 500 GeV.

Event Selection

Signatures of the signal events: $\mu^+\mu^-$ pair + one energetic isolated photon

In order to pick up our required process, following cuts are applied.

<u>Step1</u>: Select events with two isolated muons.

<u>Step2</u>: Demand events to have one isolated photon with more than 50 GeV.

Event Selection

Distribution of PFO Photon Energy Difference

Mean value is corrected to 0, but a bump exists in positive region.

The bump in the photon energy difference

Very forward and backward photons are likely to make bumps.

The bump in the photon energy difference

In the correct photon selection case, the bump remains.

Distribution of PFO Photon Angles Differences

For both θ and ϕ , mean value is corrected to 0.

Conclusion

- As for the photon energy, mean value is corrected to 0, though a bump exists in positive region. Very forward and backward photons are likely to make bumps.
- For both θ and ϕ , mean value is corrected to 0.

Back up

Signal Photon Selection

In order to choose the signal photon,

1. choose neutral particles with particle ID = 22 (Pandora PFA ID)

- 2. energy > 50 GeV
- 3. choose the particle closest to 109 (242) GeV

If another photon is inside the cone (with the angle $\cos\theta$ > 0.998 from the signal photon), it is merged with the signal photon.

Distribution of PFO Photon Energy and Angle

12

Distribution of PFO Photon

 Most likely it seems to come from a miscalibration of the electromagnetic scale for the HCal in PandoraPFA.

ϕ_{PFO} - ϕ_{MC} against ϕ_{MC}

Although fluctuation due to the overlap region in the octagonal shaped detector has appeared, all φ_{PFO} seems to be soaring evenly. The deviation of the mean corresponds to ~280 μm deviation (at the ECal inner surface).