# Status of TPC prototype integrated with UV laser

Huirong Qi

ZhiYang Yuan, Yiming Cai, Yue Chang, Zhi Deng, Yulan Li, Hui Gong, Wei Liu

Institute of High Energy Physics, CAS

Tsinghua University

LCTPC Collaboration meeting, Jan., 11, 2021

Outline

Motivation
IBF suppression R&D
TPC prototype R&D
Summary

## Motivation

### TPC limitations for Z

- Ions back flow in chamber
- Calibration and alignment
- Low power consumption FEE
   ASIC chip

#### Updated Parameters of Collider Ring since CDR

|                                                                      | Higgs        |              | Z (2T)      |         |
|----------------------------------------------------------------------|--------------|--------------|-------------|---------|
|                                                                      | CDR          | Updated      | CDR         | Updated |
| Beam energy (GeV)                                                    | 120          |              | 45.5        |         |
| Synchrotron radiation loss/turn (GeV)                                | 1.73         | 1.68         | 0.036       | -       |
| Piwinski angle                                                       | 2.58         | 3.78         | 23.8        | 33      |
| Number of particles/bunch N <sub>e</sub> (10 <sup>10</sup> )         | 15.0         | 17           | 8.0         | 15      |
| Bunch number (bunch spacing)                                         | 242 (0.68µs) | 218 (0.68µs) | 12000       | 15000   |
| Beam current (mA)                                                    | 17.4         | 17.8         | 461.0       | 1081.4  |
| Synchrotron radiation power /beam (MW)                               | 30           |              | 16.5        | 38.6    |
| Cell number/cavity                                                   | 2            |              | 2           | 1       |
| $\beta$ function at IP $\beta_x{}^*$ / $\beta_y{}^*$ (m)             | 0.36/0.0015  | 0.33/0.001   | 0.2/0.001   |         |
| Emittance ε <sub>x</sub> /ε <sub>y</sub> (nm)                        | 1.21/0.0031  | 0.89/0.0018  | 0.18/0.0016 |         |
| Beam size at IP σ <sub>x</sub> /σ <sub>y</sub> (μm)                  | 20.9/0.068   | 17.1/0.042   | 6.0/0.04    |         |
| Bunch length σ <sub>z</sub> (mm)                                     | 3.26         | 3.93         | 8.5         | 11.8    |
| Lifetime (hour)                                                      | 0.67         | 0.22         | 2.1         | 1.8     |
| Luminosity/IP L (10 <sup>34</sup> cm <sup>-2</sup> s <sup>-4</sup> ) | 2.93         | 5.2          | 32.1        | 101.6   |
|                                                                      |              |              |             |         |
| Luminosity increase factor: × 1.8                                    |              |              | × 3.2       |         |



IP

TPC detector concept

## IBF suppression R&D

### TPC detector module@ IHEP

#### **Study with GEM-MM module**

- New assembled module
- □ Active area: 100mm×100mm
- **X-tube ray and 55Fe source**
- Bulk-Micromegas assembled from Saclay
- Standard GEM from CERN
- **Δ** Avalanche gap of MM:128μm
- Transfer gap: 2mm
- Drift length:2mm~200mm
- pA current meter: Keithley 6517B
- Current recording: Auto-record interface by LabView
- **Standard Mesh: 400LPI**
- High mesh: 508 LPI





Micromegas

**GEM** 



Cathode with mesh

GEM-MM Detector - 5 -

### **GEM+MM**



IBF×Gain has the limitation ratio from the detector R&D at high gain.
Lower gain and lower IBF ratio

## IBF suppression R&D

- **UV** lamp measurement
  - Added a new voltage controller
  - pA current meter from Keithley
  - First step test about the current in mesh
  - □ E\_drift: 10~175V/cm
  - □ ~43pA@175V/cm
  - □ Stable current with UV light
  - □ ~200V/cm@T2K operation gas











### Space charge effect at the different gain



## TPC prototype R&D

## TPC detector prototype

- Study of TPC prototype with 42 UV laser beams
- Main parameters
  - Drift length: ~500mm, Active area:
     200mm<sup>2</sup>
  - □ Integrated 266nm laser beam
  - **GEMs/Micromegas as the readout**







### **Electronics and DAQ**

- Amplifier and FEE
  - CASAGEM chip
  - □ 16Chs/chip
  - 4chips/Board
  - Gain: 20mV/fC
  - □ Shape time: 20ns

### **DAQ**

- **• FPGA+ADC**
- 4 module/board
- 64Chs/module
- □ Sample: 40MHz
- **1280chs**



### FEE Electronics and DAQ setup photos



Laser map in X-Y direction

Laser map along drift length

### Fieldcage-1



#### Without hole along drift length 250mm 375mm drift E[v\_per\_cn] 1.2003c+03 1.16836+802 1.1288+882 1.0083±+832 1.04836+892 1.0003+932 9.5003+003 9.2003+001 8.82836+833

#### With Ø20mm hole along drift length

250mm

0.5000c+00 6.00036+80

375mm

drift



#### Simulation

- Hole size VS length of less than 99% of electric field
- <12mm of hole size in this prototype along drift length

### Comparison of UV laser and 55Fe



- □ Same test conditions:
  - Working gases:T2K
  - High voltage



All pads response and energy spectrum @laser and 55Fe

### Laser tracks in chamber@T2K gas



- □ Same of working gas@T2K, same of high voltage, same of test conditions
- **Different of GEMs@ 320V**
- **Triple GEMs to double GEMs**
- No discharge

### **Drift velocity**



- **Two weeks of continuous testing**
- **Room temperature recorded**
- Comparison of the drift velocity and the temperature



Space resolution at the different drift length

### dE/dx by 266nm UV laser @IHEP



Std Dev 5.925  $\chi^2$  / ndf 163.8 / 86 Prob 8.706e-07 Constant  $780.4 \pm 6.3$ Mean  $42.83 \pm 0.04$ Sigma  $5.866 \pm 0.028$ 140 120 160 180 200 Ionisation charge per pad row (fC)

h10

Entries

Mean

23109

42.84

#### Energy spectrum of the Gaussian UV laser



Experimental study result using laser and

4.91% by UV laser

### Summary

- Some motivations of TPC detector for collider at Z pole run listed.
- Some update results and performance of IBF, dE/dx, drift velocity listed.
- UV laser will be very helpful in the TPC module and prototype R&D.

# Thanks for your attention.