

A Low Power TPC Readout ASIC in 65nm CMOS

Wei Liu^{1,2}, Canwen Liu^{1,2}, **Zhi Deng^{1,2}**, Fule Li³, Yulan Li^{1,2}, Huirong Qi⁴

¹ Department of Engineering Physics, Tsinghua University, Beijing, China
²Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Beijing, China
³Institute of Microelectronics, Tsinghua University, Beijing, China
⁴Institute of High Energy Physics, Chinese Academy of Science, Beijing, China

Outline

Introduction

- Chip Architecture and Specifications
- Circuit Design
- Test Results
- > Summary

Introduction

end-plate readout modules) 9 4 fric field field cage	Momentum resolution (B=3.5T)	$\delta(1/p_t \approx 10^{-4}/GeV/c)$
	δ_{point} in $r\Phi$	<100 µm
	δ_{point} in rz	0.4-1.4 mm
	Inner radius	329 mm
	Outer radius	1800 mm
	Drift length	2350 mm
	TPC material budget	$\approx 0.05X_0$ incl. field cage < $0.25X_0$ for readout endcap
	Pad pitch/no. padrows	$\approx 1 \text{ mm} \times (4 \sim 10 \text{ mm}) / \approx 200$
	2-hit resolution	$\approx 2 \text{ mm}$
	Efficiency	>97% for TPC only ($p_t > 1GeV$) >99% all tracking ($p_t > 1GeV$)

- TPC can provide large-volume high-precision 3D track measurement with stringent material budget
- In order to achieve high spatial resolution, small pads (e.g. 1 mm x 6mm) are needed, resulting ~1 million channel of readout electronics
- Need low power consumption readout electronics working at continuous mode

Current TPC Readout ASICs

- Waveform sampling (8-10 bit, ~10MS/s) is required for TPC signal processing
- Direct ADC sampling is more preferable than SCA for high rate applications
- Lower power consumption \rightarrow less cooling \rightarrow less material

	PASA/ALTRO	AGET	Super-ALTRO	SAMPA
TPC	ALICE	T2K	ILC	ALICE upgrade
Pad size	$4x7.5 \text{ mm}^2$	$6.9 x 9.7 mm^2$	1x6 mm ²	$4x7.5 \text{ mm}^2$
Pad channels	5.7 x 10 ⁵	1.25 x 10 ⁵	1-2 x 10 ⁶	5.7 x 10 ⁵
Readout Chamber	MWPC	MicroMegas	GEM/MicroMegas	GEM
Gain	12 mV/fC	0.2-17 mV/fC	12-27 mV/fC	20/30 mV/fC
Shaper	$CR-(RC)^4$	$CR-(RC)^2$	$CR-(RC)^4$	$CR-(RC)^4$
Peaking time	200 ns	50 ns-1us	30-120 ns	80/160 ns
ENC	385 e	850 e @ 200ns	520 e	482 e @ 180ns
Waveform Sampler	ADC	SCA	ADC	ADC
Sampling frequency	10 MSPS	1-100 MSPS	40 MSPS	20 MSPS
Dynamic range	10 bit	12 bit(external)	10 bit	10 bit
Power consumption	32 mW/ch	<10 mW/ch	47.3 mW/ch	8 mW/ch
CMOS Process	250 nm	350 nm	130 nm	130 nm

Chip Architecture

- In order to reduce the power consumption:
 - Using more advanced 65 nm CMOS process favoring digital logics
 - Reducing analog circuits:
 - $CR-(RC)^n \rightarrow CR-RC$, moving high order shaping to digital domain
 - ADC structure : pipeline \rightarrow SAR (Successive Approximation Register)
- So far only the AFE and the ADC parts have been implemented

Specifications

- AFE + waveform sampling ADC + direct output
- Process: TSMC 65nm LP
- Power supply: 1.2V

AFE(Analog Front-End)		SAR-ADC	
Signal Polarity	Negative	Input Range	-0.6 V ~ 0.6 V diff.
Detector Capacitance	5-20 pF	Resolution	10 bit
Shaper	CR-RC	Sampling Rate	40 MS/s
Shaping Time	160 ns	DNL	<0.6 LSB
ENC (Equivalent Noise Charge)	<500 e @ 10pF	INL	<0.6 LSB
Dynamic Range	120 fC max.	SFDR @ 2MHz 40MSPS	68 dBc
Gain	10-40 mV/fC	SINAD	57 dB
INL (Integrated Non-Linearity)	<1%	FNOR	>9 2 hit @ 2MHz
Crosstalk	<1%	Decrea Concentration (ADC)	>9.2 UII @ 21VIIIZ
Power Consumption (AFE)	<2.5 mW/ch	Power Consumption (ADC)	<2.3 mW/ch

Circuit Design: Analog Front-End

- Charge sensitive preamplifier
- CR-RC shaper
- Differential output-stage

The test results of the first prototype chip in 2017/18:

- Power consumption: 2.02 mW/channel
- Gain: 9.8 mV/fC
- ENC(equivalent noise charge): 589 e @10pF

W. Liu, et. al. JINST 2020 W. Liu, et.al. JPCS 2020

1320µm

Circuit Design: SAR ADC

The test results of first prototype SAR ADC in 2017/18

- The core power consumption of SAR ADC:1 mW
- Maximum INL/DNL=0.6 LSB
- ENOB=9.15 bit @ 50 MS/s with 2.4 MHz sine input

90µm

W. Liu, et. al, JINST 2020 X. Wang, et. al, IEEE TCSII.2020 8

The 16-ch TPC Readout ASIC

The second prototype chip submitted in 2019:

- 16 channel AFE+ADC+LVDS data output
- The power consumption of the AFE optimized from 2.02 mW/ch to 1.4 mW/ch
- ENC optimized from 589 e to 303 e @10 pF

The Layout of the TPC Readout ASIC

- The floor plan in layout :
 - The die size of 1950 μ m x 2160 μ m
 - Analog Front-End , SPI, SAR ADC, LVDS driver are supplied by separate power
- The ASIC have been taped out in November, 2019 and is being evaluated

LVDS driver

Test Setup

• Test Setup

• ASIC Test Board

Power Consumption

- The power consumption of the AFE: **1.43 mW/ch** (1.40 mW/ch sim.)
- The power consumption of the ADC increases as the sampling rate

	AFE (mW/ch)	ADC (mW/ch)	Total (mW/ch)
Frist run (simulation)	1.93	1.0	2.93
First run (measured)	2.02	1.0	3.02
Second run (simulation)	1.40	1.0	2.40
Second run (measured)	1.43	0.9 @40MS/s	2.33

Transient waveforms

- Transient outputs
 - Differential baseline can be externally adjusted

AFE Monitor Transient outputs

ADC Transient outputs @ 30MSPS

Non-Linearity

• Transient outputs

• The linearity @ gain = 10 mV/fC

Gain = 4.4 LSB/fC = 4.4 x 2.34 mV/fC = 10.3 mV/fC

Noise (Preliminary)

- The baseline fluctuation @ gain = 10 mV/fC
 - Parasitic PCB route capacitance not included
 - Significant contribution from ADC quantization noise

ENC = 852 e @ Cin = 2 pF, gain = 4.4 LSB/fC

Non-Linearity @ 20-40 mV/fC

• Non-Linearity performance @ Cin = 2 pF

Noises @ 20-30 mV/fC (Preliminary)

• Noise performance @ Cin = 2 pF

ENC = 529 e @ 20 mV/fC

ENC=433 e @ 40 mV/fC

17

Digital Trapezoidal Filter (Preliminary)

- The waveform is symmetric , can achieve high SNR(signal to noise ratio)
- The ballistic deficit can be avoided
- Hardware resource is low cost, can be well implemented on chip
 - 2 multiplications ,6 additions and subtractions , some shift operations

Digital Trapezoidal Filter (Preliminary)

gain = 10 mV/fC

flat time(us)

- More symmetric waveforms
- ENC noise
 - Original CR-RC ENC = 852 e
 - Min. ENC of 474 e after digital trapezoidal filter

Summary

- A 16 channel low power readout ASIC for TPC readout have been developed
 - The power consumption is 2.33 mW/channel:
 - P_{AFE}=1.43 mW/channel
 - $P_{ADC} = 0.9 \text{ mW/channel} @ 40 \text{MS/s}$
 - ENC = 852 e @ Cin=2 pF, gain=10 mV/fC and can be reduced to 474 e using digital trapezoidal filter
- Future Plan
 - More ASIC evaluations: higher sampling rate, more detailed noise test, test with detectors...
 - Low power digital filter and data compression in FPGA/ASIC

Thank You