Study of running bottom quark mass at 250GeV ILC

S. Tairafune¹ A. Irles² M. Vos² H. Yamamoto² J. Fuster² G. Rodrigo² R. Yonamine¹ ¹Tohoku University ²IFIC Valencia

2020. Dec. 17 ILD Top/HF group meeting

Introduction

- ✓ LEP had measured b mass at Z-pole, and it was agree with the SM.
- ✓ Since any probes of BSM hadn't be seen at Z-pole, as the next challenge, we're focusing 250GeV.
- ✓ Looking energy dependence of b mass provides
- 1. Precise verification of QCD theory
- 2. Discussion of viability of BSM(e.g. SUSY GUTs)
- ✓ Using the 3 jet ratio R_3^{bl} is the method in order to measure b mass at 250GeV.

Observable : $R_3^{bl} = \frac{3 \text{ b-jet event / all b-jet event}}{3 \text{ uds-jet event / all uds-jet event}}$

- ✓ Signal event : $e^+e^- \rightarrow q\bar{q}$
- ✓ Backgrounds : radiative return on $e^+e^- \rightarrow q\bar{q}$, Full hadronic mode of $e^+e^- \rightarrow WW/ZZ/Zh$

b mass evolution from

Pre-Selection

Radiative return Cut

 $K_{reco} < 50 GeV \& m_{2jets} > 130 GeV$

$$K_{\gamma} \equiv \frac{250 \text{GeV} \cdot \sin \psi_{acol}}{\sin \psi_{acol} + \sin \theta_1 + \sin \theta_2}$$

- Photon veto cuts by neutral PFO :
 - 1. The neutraleness of both jets has to be smaller than 0.85
 - 2. Both jets should contain more than 5 neutral PFOs
 - 3. None of the jets should contain a neutral PFO with E > 50 GeV in the very forward region ($|\cos \theta| > 0.98$)
- Radius on neutraleness plane < 0.35 (inside of red circle) Neutraleness \equiv (Neutral PFO E)/(All PFO E)

Background events Cut

• Thrust > 0.85

Obtained accuracy of R_3^{bl}

Statistic error	tatistic error 100% left 100 (MC 250fb ⁻¹) (MC		(-80%,+30%) polarization (H20 900fb ⁻¹)	(+80%,-30%) polarization (H20 900fb ⁻¹)	
Statistics	9960354	3273497	21209680	8090066	
$R_3^{bl} (@y_c = 0.01)$	1.0604 ± 0.0115278	1.08258 ± 0.0230363	1.06073 ± 0.00791657	1.07821 ± 0.0142826	

Systematic	Uncertainty (for b-quark)	Uncertainty (for light-quark)	Uncertainty on R ₃ ^{bl} (100% Left)	Uncertainty on R ₃ ^{bl} (100% Right)	
Flavor-Tagging	0.1-0.3%	0.1-0.3%	0.0053-0.016%	0.015-0.044%	
Pre-Selection	0.5-1.0%		0.021-0.043%	0.043-0.085%	
Flavor-Tagging (Rad.ret.)	0.5-1.0%		0.07-0.15%	0.056-0.11%	
Pre-Selection (Rad.ret.)	1.0-2.0%		0.04-0.08%	0.07-0.14%	
Other BKGs rejection	0.1-1.0%		0.01-0.15%	0.034-0.34%	$\leftarrow D$
Total	—		0.08-0.23%	0.09-0.38%	Sy

-Dominant in systematic sources

Errors on Observable : $\Delta R_3^{bl}(stat.) = 0.65\%$, $\Delta R_3^{bl}(had.) = 0.1\%$, $\Delta R_3^{bl}(exp.) = 0.23\%$

NOTE) Systematic error which comes from hadronization model is extrapolated from LEP here.

Updated News

- ✓ Since using MC sample simulates gluon radiation up to LO with massless quarks, obtained R_3^{bl} is not reliable completely.
- ✓ However, we can estimate the precision of b mass measurement at 250GeV ILC itself.
- ✓ Our MC 3 jet ratio may be unreliable and it'll affect to statistical error. We're waiting for theoretical calculation as reference.
- ✓ WHIZARD authors have worked update the current version to the new one; NLO with massive quarks.

For the moment, b mass accuracy will be

$$\left|\frac{\Delta m_b}{m_b}\right| \sim 100 \frac{\Delta R_3^{bl}}{R_3^{bl}} = 65(stat.) + 10(had.) + 23(exp.) = 98\%$$

If the central value is 2.5GeV, the error is about 2.45GeV(quite large!).