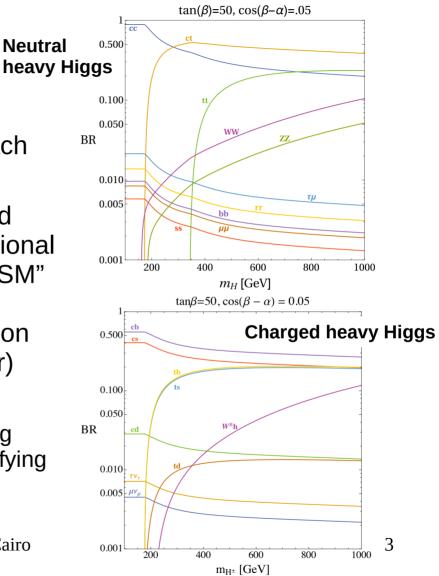
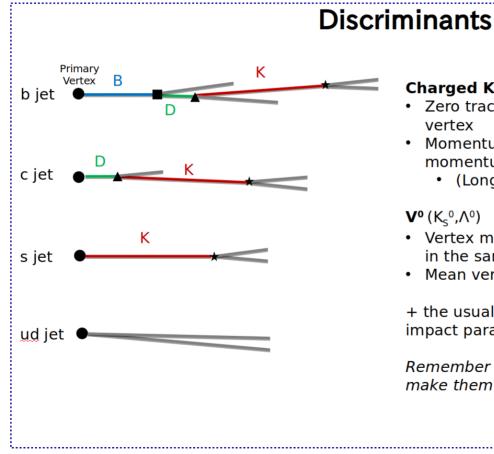
Towards Strange Tagging with ILD A summary of our progress to-date

ILD Software Meeting – January 13, 2021 Matt Basso (University of Toronto) & Valentina Cairo (SLAC), On behalf of everyone on the Snowmass 2021 Lol



Overview

- LoI: "Strange Quark as a probe for new physics in the Higgs Sector" – in line with ILC Snowmass 2021 study questions (2007.03650)
 - <u>Basic goal</u>: develop a strange tagger using ILD and apply the tagger to a simple SM H->ss or BSM H->cs analysis
 - Interplay with the instrumentation: strange tagging capabilities strong depend on the detector (e.g., PID)
 - Collaboration between SLAC, Brown, Oregon, KEK, and Toronto
 - Two working meetings since August:
 - September 24th, 2020
 - November 24th, 2020


H->ss and H->cs

- H->ss: likely to remain out of experimental reach unless enhanced relative to SM expectations
- H->cs: some BSM models allow for the 1st and 2nd generation fermion masses to be an additional source of EW symmetry break, resulting in a "SM" Higgs doublet (125 GeV) and a "heavy" Higgs doublet (see 1610.02398 for instance, figures on the right taken from Figs. 3 and 6 of that paper)
 - Predicts an enhancement to Higgs cross section
 - Charged heavy Higgs can undergo flavour violating decays (e.g., cs) – s/c-tagging can help with identifying these

Matt Basso & Valentina Cairo

Different jet types, pictorially

Taken from Slide 5 of Tomohiko Tanabe's presentation

Charged Kaon track

- Zero track impact parameter w.r.t. primary vertex
- Momentum fraction relative to the jet momentum carried by the leading Kaon
 - (Longitudinal vs transverse components?)

$V^{0}(K_{s}^{0},\Lambda^{0})$

- Vertex momentum & displacement must point in the same direction
- Mean vertex distance smaller compared to b/c

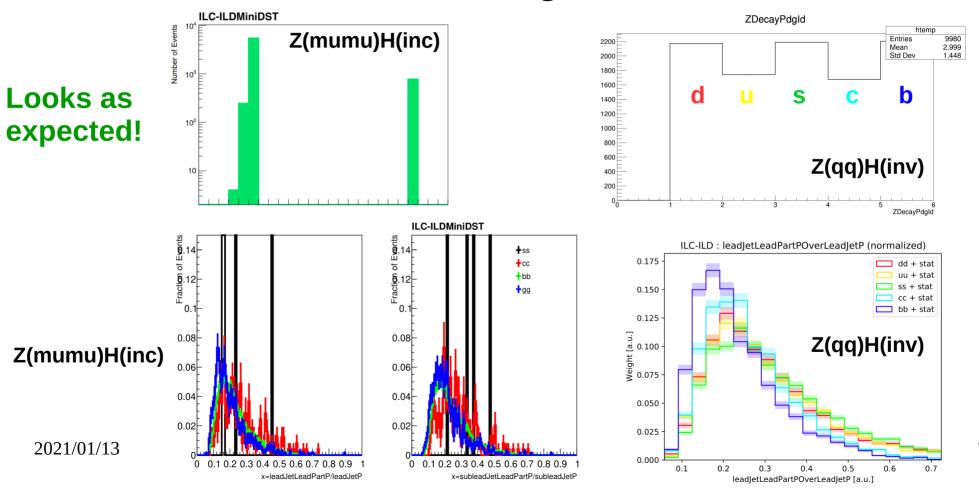
+ the usual b/c discriminants (vertex mass, impact parameter for all tracks, etc.)

Remember to normalize the discriminants to make them boost invariant (as much as possible)

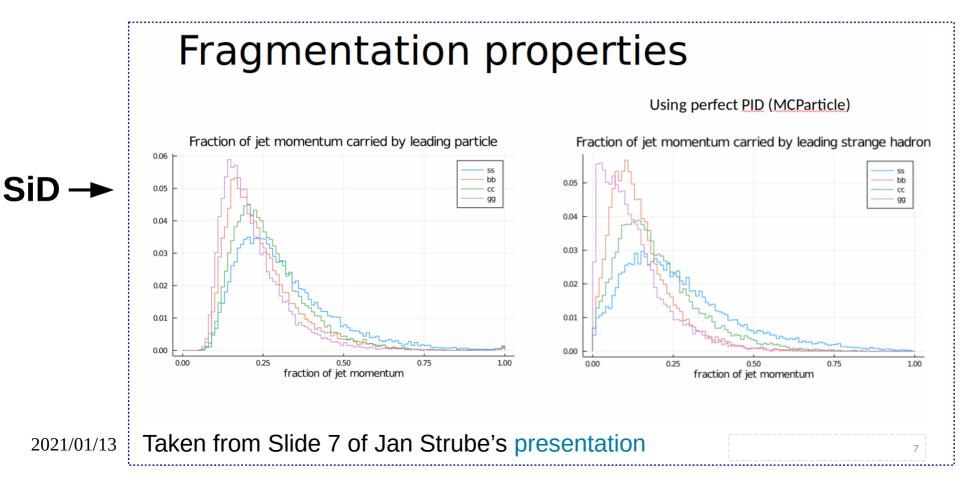
2021/01/13

Analysis workflow

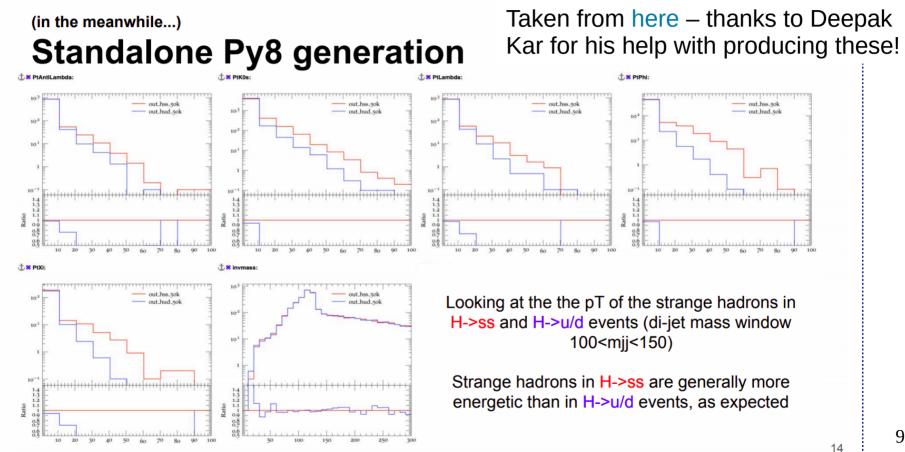
- Build iLCSoft @ v02-15-02, run macros which closely follow the macro used in Daniel Jean's tutorial
 - Is this tag still recommended? e.g., should we update to v02-16?
- Workflow (done in C++ & Python, a similar workflow works equally in Julia):
 - (\checkmark) Run ROOT macros on input miniDSTs, dump variables of interest to ntuples
 - (~) Load the ntuples into Python (uproot), train an MVA with TensorFlow+Keras
 - (X) Apply trained MVA to analysis macro running on input miniDSTs


 - Background samples??

Testing things out


- Wrote dedicated macros for Z(mumu)H(inc) [1] and Z(qq)H(inv) [2] samples
 - BR(H->ss) \approx 0.1%, so expect very few events for H inclusive sample
 - BR(Z->dd+ss+bb)/3 = 15.6% and BR(Z->uu+cc)/2 = 11.6%, so expect to see strange jet kinematics better with Z(qq)H(inv)

[1] rv01-16-p10_250.sv01-14-01-p00.mILD_o1_v05.E250-TDR_ws.I106479.Pe2e2h.eL.pR-00001-ILDminiDST.slcio [2] rv01-16-p10_250.sv01-14-01-p00.mILD_o1_v05.E250-TDR_ws.I108079.Pqqh_zz_4n.eL.pR-00001-ILDminiDST.slcio


A few sanity checks

...and consistent with colleagues

...and true at truth level

H->qq/gg miniDSTs

- To improve statistics for training, we've switched to dedicated Z(inv)H(qq/gg) samples (thanks to Jenny List and Shin-ichi Kawada!)
 - 50,000/events per flavour
 - Available: /nfs/dust/ilc/group/ild/miniDST/E250-SetA/ILD/flavortag/ (accessible on DESY-NAF)
- **No issues** with running on the samples, but some confusion as how to access the dE/dx, TOF, PID, etc. more on this

(Towards) training an s-tagger

- **Haven't** gotten this far, *some* considerations:
 - Training events will likely see the MVA deployed on them too need to kfold inputs:
 - evt->getEventNumber() % N == {0, 1, ..., N-1}, N := # of kfolds
 - Inputs will likely consist of jet variables + per-track variables within each jet
 - In H->qq, there are two jets in each event: do we want to use only 1 of the jets in training? If so, leading or subleading or random?
 - Track momentum redefined wrt to the jet momentum axis, 4-vector normalized to jet momentum
 - Sensible ordering of tracks? In order of highest track+calo weight or momentum?

Inputs and outputs

- <u>Outputs</u>: could imagine the network provides bottom, charm, strange, and light output scores
 - Multiclassifier provides more freedom for output class
- Jets: p4, ILD tagger scores (b-, c-, o-, and category?), ...
 - Anything else which is sensible/useful to include?
- <u>Tracks (jet constituent particles)</u>: p4, momentum / jet momentum, dE/dx (+ uncertainty?), different PID likelihoods, ...
 - Anything else?

Tagger architecture(s)

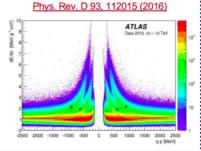
- Possible architectures from the literature include:
 - "Maximum performance of strange-jet tagging at hadron colliders" (2011.10736 – published in November 2020)
 - {Recurrent neural network for track inputs} + {jet inputs} -> Concatenate -> multilayer perceptron (MLP) -> output
 - Could also use MLP on the jet inputs prior to concatenation
 - "ParticleNet: Jet Tagging via Particle Clouds" (1902.08570)
 - Proposed for flavour tagging at FCC-ee (see talk here)
 - *Complex*: represent particles in jet as a graph and apply EdgeConv (1801.07829) units to relationships between a given particle and its nearest neighbours

dE/dx+TOF for kaon separation

Taken from here

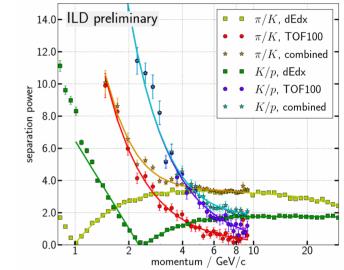
SLAC

Strange Tagging


Existing strange tagging studies suffer from low efficiency and very large mis-tag probability from u and d quarks, even when using sophisticated machine learning algorithms

To complement existing studies (more on this in the next slides), we thought we would put **more emphasis on exploiting Particle Identification** to get a better handle on pions/kaons identification, and consequently on s/d quark discrimination

This implies looking at new detector concepts


 Current general purpose detectors use the well known dE/dx dependence on βγ, but this only allows to get to good PID up to ~1 GeV

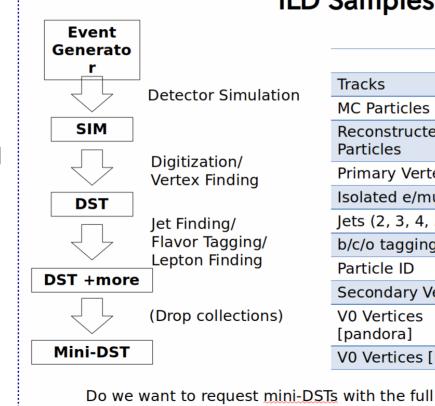
- Alternatively, as foreseen for the HL-LHC detectors, timing information can be used to deduce a velocity that, in combination with the standard measurement of momentum from track curvature in the magnetic field, yields a measure of the charged particle mass.
- Another very effective way to achieve particle identification is through Cherenkov detectors, as done in the ALICE and LHCb experiments at the LHC

3

In either scenario, **kaons beyond the 10 GeV range** will have to be identified in order for this to be relevant for strange tagging.

Plot taken from Slide 14 of Uli Einhaus' presentation

dE/dx seems to reach a 2 sigma pi/K separation power throughout the desired momentum range: 14 is this good enough?


VMM CAIRO

Technical questions

- Constituents of jet accessed with ReconstructedParticle::getParticles()?
- How to access track(s) associated to constituent particle? ReconstructedParticle::getTracks()?
 - Returns vector of nullptrs understood?
 - Is it possible to access impact parameters, dE/dx otherwise?
- Likelihood seems access for algorithm "LikelihoodPID" here and for algorithm "dEdxPID" here what is the difference between the two?
 - e.g., see Backup for first attempt at accessing this info
- Is there a way to access TOF?

DST vs. miniDST

Do miniDSTs have the **links** from the particles in a jet to their respective tracks? Is there a good reason why we should have **all** tracks?

ILD Samples Taken from Slide 7 of Tomohiko Tanabe's presentation

	DST	Mini-DST
Tracks		
MC Particles	1	1
Reconstructed Particles	✓	1
Primary Vertex	1	1
lsolated e/mu/tau		1
Jets (2, 3, 4, 5, 6)		1
b/c/o tagging		1
Particle ID	1	1
Secondary Vertices	-	
V0 Vertices [pandora]	(
V0 Vertices [lcfiplus]	1	

2021/01/13

Do we want to request <u>mini-DSTs</u> with the full collections (for a select few channels)?

Conclusion

- Making **steady** progress, a long way to go though!
 - Workflow for running on flavour tag samples is straightforward, still need to add PID info to ntuples
 - Framework exists for training in Keras, still need to figure out how to define RNN+MLP network (starting with the simpler of the architectures in the literature)
- In terms of achieving nice results, we will profit from the delayed Snowmass timeline
 - There are also parallel efforts in 4D tracking technology (see Lol)

Questions?

Backup

ALICE PID Performance

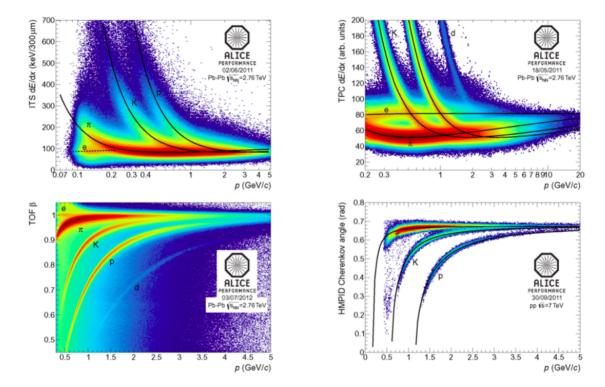
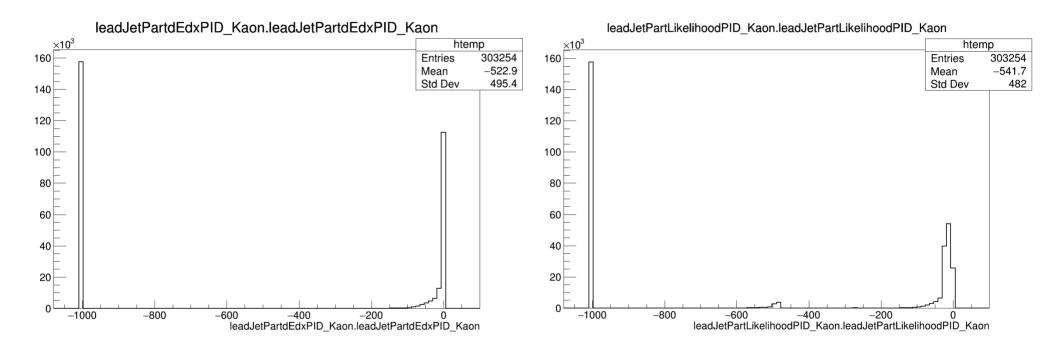



Figure 2: The PID performance of the ALICE detector. The figure shows the ITS dE/dx vs p, the TPC dE/dx vs p, the TOF β vs p, and the HMPID Cherenkov angle vs p.

2021/01/13

Taken from Fig. 2 in: M. Ivanov, Nuclear Physics A 904–905 (2013) 162c–169c

Kaon Likelihood for H->ss

