finding kinks in the TPC a first report

Sreemanti Chakraborti [IIT Guwahati] Daniel Jeans [KEK]

many BSM models have signatures such as

if decay occurs in TPC, can it be identified?
probably depends on size of kink, and therefore on $\Delta m=m_{a}-m_{b}$

simulated in MSSM

$$
\begin{aligned}
& \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{X}_{2}^{+} \mathrm{X}_{2}^{-} \\
& \mathrm{X}_{2}^{+/-} \rightarrow \mathrm{X}_{1}^{+/-}+\text {invisible }[\mathrm{Z} \rightarrow \mathrm{nu} \mathrm{nu}] \\
& \mathrm{E}_{\mathrm{CM}}= 250 \mathrm{GeV} \\
& \mathrm{~m}_{\mathrm{X} 2}= 110 \mathrm{GeV} \\
& \mathrm{~m}_{\mathrm{X} 1}= 109.8 / 109.0 / 105.0 / 100.0 \mathrm{GeV}
\end{aligned}
$$

$X_{2}{ }^{+}$lifetime adjusted to often decay in TPC
whizard (no ISR or beamstrahlung) ilcsoft v02-02
detector simulation (ILC_15_v02) Marlin reconstruction (detector o1, no overlay)

how does standard reco do ?

count number of reconstructed tracks (MarlinTrk collection) matched to the $\left(X_{2} X_{1}\right)$ pair

position of the break between tracks (standard MarlinTrk reco)
marlinTrkDecR_mcRec

how does standard reco do ?
nMarlinTrkBarr

nMarlinTrkBarr

less efficient at smaller mass differences

less precise at smaller mass differences ${ }^{7}$

we do run a kink-finder in production

it doesn't identify many:

I haven't spent much effort trying to work out why...

try an alternative approach, dedicated to kink finding

hit finding: for now use MC links
\rightarrow identify hits produced by $\left[x_{2} X_{1}\right]$ pair (but not by which of X_{2}, X_{1})
preselection:
exactly 2 silicon tracks/event
[$\left.\mathrm{X}_{2} \mathrm{X}_{1}\right]$ pair associated to at least 200 TPC hits

1. fit all TPC hits (KalTest)

- use track state at last hit of Silicon track as initial guess
- add TPC hits (in order of increasing radius)
- (don't yet use SET)
- look at chisq of this track, and Prob(chisq, nDOF)

2. then look for a kink
in \rightarrow out track
initial guess: track state at last hit of Silicon track
add\&fit TPC hits one-by-one, in order of increasing radius
record [track state, chi2, nDoF] at each hit
out \rightarrow in track
starting from outer TPC hits, move inwards
add TPC hits one-by-one
record [track state, chi2, nDoF] at each hit
at each TPC hit, we now have track parameters when it is

- outermost hit of in \rightarrow out track
- innermost hit of out \rightarrow in track

$$
\text { in } \rightarrow \text { out track out } \rightarrow \text { in track }
$$

Si track

TPC hits
cut-hit
at each TPC hit, have two tracks, with a common "cut-hit"

Si track
TPC hits
cut-hit
at each TPC hit, have two tracks, with a common "cut-hit"

at each TPC hit, have two tracks, with a common "cut-hit"
compare the 2 sets of track parameters at the cut-hit, using the covariance matrices

Chi $^{2}=\left(\mathbf{P}_{1}-\mathbf{P}_{2}\right)^{\top}\left(\operatorname{cov}_{1}+\operatorname{cov}_{2}\right)^{-1}\left(\mathbf{P}_{\mathbf{1}}-\mathbf{P}_{2}\right)$
small Chi2 = consistent parameters large Chi2 $=$ inconsistent

TPC only

reconstructed kink point: minimum "chiSq-trk1 + chisq-trk2" more examples

examples with decay outside TPC

$\mathrm{m} 2 ; \mathrm{m} 1=110 ; 109 \mathrm{GeV}$

Ev4a_TPConly_rdec3049_chisqSum

Ev5a_TPConly_rdec5387_chisqSum

Ev4b_TPConly_rdec2696_chisqSum

Ev5b_TPConly_rdec155_chisqSum

Ev5a_withSi_rdec5387_chisqSum

once we identify the cut-hit with minimum chisq, how do we decide if it's a real kink?

TPC hits
is an identified kink significant?
compare Prob (chisq_all, nDoF_all) [track with all TPC hits]
with Prob (chisq_1, nDoF_1) * Prob (chisq_2, nDoF_2)

m2; m1 = $110 ; 109 \mathrm{GeV}$

TPC hits

is an identified kink significant ?

compare Prob (chisq_all, nDoF_all) [track with all TPC hits]
with Prob (chisq_1, nDoF_1) x Prob (chisq_2, nDoF_2)

aiming for clean, low-bg selection
selected kinks: Prob_all < 1\% \&\& Prob_1 * Prob_2 > 5\%

selected kink radius: reconstructed vs. MC using only TPC hits
 SiTrack + TPC hits

SEL_tponly_ALL_mc_rec_R

true (MC) decay radius [mm]
true kink in inner detector, but kink reconstructed in TPC
unified treatment of Si and TPC hits is needed \rightarrow future plan for now, use TPC-only

kink finding: position resolution

SEL_tpconly_TPC_mcR_deltaR

		SEL_tpconly	PC_mcR_deltaR_py
${ }_{500}$		Entries	2050
$500-$	-	Mean	0.608
-	,	Std Dev	16.59
-	,	χ^{2} / ndf	127.2 / 7
400 -		Prob	$2.417 \mathrm{e}-24$
-		Constant	487.3 ± 18.0
-		Mean	-0.248 ± 0.135
$300-$		Sigma	5.443 ± 0.150

m2; $\mathrm{m} 1=$ 110 ; 100 GeV
$\sim 5 \mathrm{~mm}$

kink finding efficiency

(TPC only; fraction of in-TPC decays for which we find a kink n.b. no quality cut yet: e.g. consistent kink radius)

less efficient if decay is near inner/outer TPC surface

kink finding efficiency

(TPC only; no quality cut yet: eg consistent kink radius)

kink finding efficiency

(TPC only; no quality cut yet: eg consistent kink radius)
look at 3d angle between mother-daughter at decay point: "MC kink angle"
distribution depends strongly on mass difference
efficiency
for decays with >200 TPC hits \& decay radius in range $500-1500 \mathrm{~mm}$
~80\% above $\sim 6 \mathrm{mrad}$ (0.3 deg)
-55% at 3 mrad
$\sim 5 \%$ at 1 mrad

summary

kinked tracks can be a signature of BSM physics
looking at kink-finding in TPC
using only TPC information, good efficiency for kinks >3~5 mrad

future plans

backgrounds / fake kinks / real decays in flight / bremstrahlung
adding silicon hits
apply to some BSM models

