Investigating High Precision Tracker p-Scale Calibration with ${\rm K}^0_{\rm S},\,\Lambda,\,{\rm D}^0,\,J/\psi$

Graham W. Wilson (Univ. of Kansas)

January 27, 2021

Introduction

- ILC can and should make precision measurements of the masses of known fundamental particles ($M_{\rm H}$, $M_{\rm t}$, $M_{\rm W}$, $M_{\rm Z}$), and $\Gamma_{\rm Z}$. Measure new ones $M_{\rm X}$.
- A primary issue for most determinations is the measurement of the **absolute** center-of-mass energy scale. A method, the so-called $\sqrt{s_p}$ method, has been proposed using only the momenta of muons in di-muon events.
- Critical issue for $\sqrt{s_p}$ method: calibrating the tracker momentum scale.
- Up to now, foresaw $J/\psi \rightarrow \mu^+ \mu^-$ with mass known to 1.9 ppm as the gold standard method. Statistically limited though in e^+e^- collisions.

More details in my older studies of \sqrt{s}_p from DESY, ECFA LC2013, and of momentum-scale from Fermilab, AWLC 2014.

Today,

- Explore method based on the Armenteros-Podolanski construction (inspired by Rodriguez et al.) using mainly $K_{\rm S}^0$, Λ .
- **2** Bonus: potential to also improve masses of parent and daughter particles.

Particles of Interest

- $\bullet\,$ Indeed J/ψ is the best measured parent particle, but other particles much more prevalent
- Daughter masses are known very well (except K^{\pm})
- ppm = parts per million, ppb = parts per billion (10^9)

Particle	Mode	$\Delta M/M$ (PDG-2020)	$n_Z^{ m had}B$
K_{S}^{0}	$\pi^+\pi^-$	26 ppm	0.71
Λ	p π^-	5.4 ppm	0.25
D^0	$K^{-}\pi^{+}$	27 ppm	0.018
J/ψ	$\mu^+\mu^-$	1.9 ppm	0.00031
Z	$\mu^+\mu^-$	23 ppm	(0.047)
μ_{\perp}	_	23 ppb	
π^{\pm}	-	1.3 ppm	
K^{\pm}	-	32 ppm	
p	_	6.4 ppb	

Following slide has the expected mass peaks from the main decay modes for a sample of 250 M hadronic Z's (91 GeV). Uses ILD momentum resolution parametrization. Hierarchy: K_{S}^{0} , Λ , D^{0} , J/ψ .

Mass Peaks in 250 M hadronic Z's (91 GeV)

(this is just for Λ - multiply by two).

113M, 34M, 3.8M, 65k

- Study uses lots of events. Sufficient that many of the known particle masses could be improved by factors of up to 75 for 250M hadronic Zs.
- Likely a real reach in terms of eventual systematics. Discussed more later.
- Study so far is like an estimate of the average *B*-field absolute scale statistical uncertainty.
- For now I decided to be somewhat cavalier for several reasons.
 - High event counts are needed to uncover residual systematics in the fit procedure and figure out how to correct them.
 - Some channels need very high statistics to be viable especially in the context of the analysis method chosen.
 - A high statistics run at the Z for EW precision measurements with potentially 4000 M Z's would have 16 times this statistics
 - This study should give an idea of how well point-to-point systematics might be controllable for scan observables.

Armenteros-Podolanski Method for 2-body V Decays

J. Podolanski and R. Armenteros, "Analysis of V-events", Phil. Mag. 1954. For a "V-decay", $M^0 \rightarrow m_1^+ m_2^-$, decompose the daughter momenta in the lab into components tranverse and parallel to the parent momentum.

The resulting distributions of (daughter p_T , $\alpha \equiv \frac{p_L^+ - p_L^-}{p_L^+ + p_L^-}$) are related by the CM decay angle, θ^* , the underlying masses, (M, m_1, m_2) , that determine, p^* , and β .

plot from talk by M. Schmelling

Armenteros-Podolanski II

CM frame, so $p_1^* = p_2^* = p^* = \frac{\sqrt{[M^2 - (m_1 + m_2)^2][M^2 - (m_1 - m_2)^2]}}{2M}$. Transverse momentum, $p_T^* = p^* \sin \theta^* = p_T$ in CM and lab.

One can derive, that
$$\alpha = \frac{2p^*}{\beta M} \cos \theta^* + \frac{m_+^2 - m_-^2}{M^2}$$
 and can rewrite as

$$\alpha = \alpha_0 + \frac{r_{\alpha}}{\beta} \cos \theta^* \text{ where } \alpha_0 \equiv \frac{m_+^2 - m_-^2}{M^2}, \ r_{\alpha} \equiv \frac{2p^*}{M}$$

AP Ellipse :
$$\left(\frac{\alpha - \alpha_0}{(r_{\alpha}/\beta)}\right)^2 + \left(\frac{p_T}{p^*}\right)^2 = 1$$
 (1)

Elliptical Transformation a la Rodriguez

Building on the recent preprint, arXiv:2012.03620 (Rodriguez et al), one can "flatten" the measured AP ellipse into (r, ϕ) variables defined using

$$\begin{cases} \alpha(r,\phi) = \widetilde{\alpha}_0 + \frac{\widetilde{r}_\alpha}{\beta} r \cos\phi \\ p'_T(r,\phi) = S_p \ p_T(r,\phi) = \widetilde{p}^* r \sin\phi \end{cases},$$
(2)

where the tilde based values assume some reference masses, p'_{T} is the measured p_{T} biased by a momentum scale factor, S_{p} . Straightforward solution is:

$$\begin{cases} r^{2}(\alpha, p_{T}^{\prime}, \beta) = \left(\frac{\alpha - \tilde{\alpha}_{0}}{(\tilde{\tau}_{\alpha}/\beta)}\right)^{2} + \left(\frac{p_{T}}{\tilde{p}^{*}}\right)^{2} \\ \phi(\alpha, p_{T}^{\prime}, \beta) = \operatorname{atan2}\left(\frac{p_{T}}{\tilde{p}^{*}}, \frac{\alpha - \tilde{\alpha}_{0}}{(\tilde{\tau}_{\alpha}/\beta)}\right) \end{cases}$$
(3)

Equation 1 results in a quadratic in r that depends on ϕ with coefficients defined by combinations of true masses, reference masses, S_{ρ} , and β .

$$\left(\frac{(\widetilde{\alpha}_0 - \alpha_0) + (\widetilde{r}_\alpha/\beta)r\cos\phi}{(r_\alpha/\beta)}\right)^2 + \left(\frac{\widetilde{\rho}^*r\sin\phi}{S_\rho \rho^*}\right)^2 = 1 , \qquad (4)$$

If all masses are as assumed, and $S_{p}=1$, expect $r(\phi)=1$ for $m_{1}=m_{2}.$

Illustrate with $K_{\rm S}^0$ (113M accepted decays)

Simulate measurement of (p_T, α) . For each decay, measure corresponding (r, ϕ) using Eqn. 3 with reference masses. For each bin in $\cos \phi$ (approximately the same as $\cos \theta^*$), find the mean value of $1/r^2$. For $S_p = 1.0001$.

Fit $1/r^2$ vs cos ϕ for underlying parameters $(m_{\rm K_S^0}$ and $S_p)$ with m_{π} assumed known perfectly. Uses reference (tilde) value of the PDG $\rm K_S^0$ mass + 0.1 MeV. Results: $\chi^2/{\rm dof} = 108/98$ and relative uncertainties on $(m_{\rm K_S^0}, S_p)$ of (0.3, 0.5) ppm with correlation of -97.9%. Deviations are $(+2.6, -3.9)\sigma$ (residual systematics? fix...)

Parametric Form (for $m_1 = m_2 = m$)

For this simpler case, the solutions of the quadratic equation (with B = 0) lead to

$$\frac{1}{r^2} = -\frac{A}{C} = \left(\frac{\tilde{r}_{\alpha}}{r_{\alpha}}\right)^2 \cos^2 \phi + \left(\frac{\tilde{p}^*}{S_p \ p^*}\right)^2 \sin^2 \phi \ . \tag{5}$$

Note: no dependence on β . Define, $c_r = \frac{\tilde{r}_{\alpha}}{r_{\alpha}}, c_p = \frac{\tilde{p}^*}{S_p p^*}$. Eqn. 5 becomes

$$\frac{1}{r^2} = c_p^2 + (c_r^2 - c_p^2)\cos^2\phi$$
 (6)

- Can measure both r_{α} and the product, $S_p p^*$.
- These depend on M, m, and S_p .
- When *m* is well known. Can measure *M* and *S*_p.

•
$$r^{-2}(\cos\phi=0,\pm 1)=(c_p^2,c_r^2)$$

• p'_T depends on S_p . α does not.

Experimental Methods Used in Current Study*

Caveat: short-term goal to establish whether this method can work and get first estimates of precisions especially at the Z. Not meant to be an end-to-end study.

Methods

- Use toy MC generator with momentum spectrum from PYTHIA 6.
- Use parametrization of "normal" ILD momentum resolution (from fits to DBD curves) checked with SGV. (trackresmodel.py code attached)
- Scale a and b parameters for reduced lever arm (decays). Scale b by $1/\beta$.
- $\frac{d\sigma}{d\cos\theta} = 1 + \cos^2\theta$. Rates from PDG.
- Neglect angular resolution and backgrounds.

Cuts

- Angular acceptance: $|\cos \theta| < 0.90$
- Minimum track detector p_T of 0.25 GeV
- Fiducial cut (decay vertex within 20 cm of outer edge of TPC in r and z)
- Require decay radius exceeds 250 μ m (only for $K_{\rm S}^0$, Λ)
- $\bullet\,$ Require momentum resolution of each track <1% (for late decays ...)

ξ Distributions and Efficiency

Graham W. Wilson (Univ. of Kansas)

Lambda Fits (Eqn 4 with $\widetilde{\alpha}_0 \neq \alpha_0$)

Lowest decile ($\beta < 0.885$) is excluded from all fits for now. (suspect β -bite is currently too big.) *r* vs ϕ dependence depends on β . So divide and conquer. Divide β range in tenths. Use $< \beta >$ in fit for now. Example with $\beta \in [0.9853, 0.9904]$.

Again for $S_{\rho} = 1.0$ and M + 0.1 MeV. Fit $\chi^2/dof = 109/98$. Find (M, S_{ρ}) to (0.3, 5) ppm, $\rho = -0.962$. Uses 1.7M A's. Overall fit has $\times 18$ (for 250M Z).

Mega Fit for $\rm K^0_S$, Λ , $\overline{\Lambda}$ with 250M Z statistics

Fit deciles for each particle type (necessary for $\Lambda/\overline{\Lambda}$). 9 deciles of Λ , 9 deciles of $\overline{\Lambda}$, 10 deciles of K^0_S .

Here m_p is fixed. Technically, fits are set up with χ^2 penalty terms that constrain the particles to the PDG masses within known uncertainties. So in essence the fitted masses are new world averages.

J/ψ stand-alone fit (250M Z's, 65k accepted J/ψ)

Fix m_{μ} .

• Consistent with prior estimate of 1.0 ppm statistical uncertainty on S_p from $J/\psi \rightarrow \mu^+\mu^-$ in 4 GZ hadronic (find 1.03 ppm here).

• Fit with $m(J/\psi)$ fixed gives 4.0 ppm uncertainty on S_p .

Intrinsic S_p sensitivity (mostly for reference)

For each particle decay separately, carry out fit with all particles set to correct masses, and fit only for S_p (again using 250M hadronic Zs).

Results:

Particle	Mode	S_p uncertainty	$n_Z^{ m had}B$	5
$ m K_S^0$	$\pi^+\pi^-$	0.104 ppm	0.71	0.00139
Λ	p π^-	0.297 ppm	0.25	0.00235
D^0	$K^{-}\pi^{+}$	0.538 ppm	0.018	0.00114
J/ψ	$\mu^+\mu^-$	3.98 ppm	0.00031	0.00111

Sensitivity, S, defined as S_p relative uncertainty per event, ie,

$$S = [\Delta(S_p)/S_p]\sqrt{250 \times 10^6 (n_Z^{\mathrm{had}}B)}$$

Note that the sensitivity to S_p differs quite a lot (due to different Q values).

I am also looking into adding other decay modes into the mix. For now, adding D^0 with only the $K^-\pi^+$ decay mode would add uncertainty from both the D^0 mass and the charged kaon mass. $\phi(1020)$ is not so interesting given the width.

For example,

- **1** $D^+ \to K_S^0 \pi^+$ (1.56%)
- **2** $D^+ \to K^- \pi^+ \pi^+$ (9.38%)
- **3** $D^0 \to K_S^0 \pi^+ \pi^-$ (2.80%)

So far fits to D^0 with only $K^-\pi^+$ (3.95%) with two free parameters, S_p and m(K), (ie. $m(D^0)$ fixed) give S_p to 0.69 ppm and m(K) to 2.0 ppm for 250M Zs. $(\rho = +0.63)$.

More realistic and improved methods / systematics?

Full Reconstruction

- Need to develop performant V0 finder and fitter for large IP.
- With nano-beams much potential.
- Looper reconstruction
- Angular resolution
- Backgrounds
- Expect some degradation in resolution for Si-poor tracks.

Systematics

- Field map precision
- Tracker alignment/survey
- Material distribution
- Energy loss corrections
- Radiative tails
- Variations with p, $\cos \theta$, decay point
- \bullet Smaller bins / better β treatment
- Understand $r, \cos \phi$ resolution
- Current measurements are based on the sample average from TProfile plots. Scope for improved measurement uncertainties simply from fits to the r distributions in each $\cos \phi$ bin and better use of errors.
- Note β estimate uses the measured *P* and measured mass of the two tracks.

$$M^2 = m_1^2 + m_2^2 + 2p_1p_2(rac{1}{eta_1eta_2} - \cos\psi_{12})\,, \ \ eta = P/\sqrt{P^2 + M^2}$$

- Tremendous opportunity to target ppm type uncertainties on the momentum scale factor, S_p , at the Z.
- Would open up precision measurements of the masses of lots of known particles at the ppm level. In particular: K_S^0 , Λ , π^{\pm} , K^{\pm} .
- Would guarantee similar precision in the center-of-mass energy scale which would open a high precision Z program.
- When I started working on this a few years ago, 10 ppm seemed a sensible but very challenging goal. Maybe the bar should be set a bit higher still.
- Convincing people that this is realistic when typical experiments are at best at the 100 ppm level needs a lot of more realistic work, and work on designing this kind of functionality in from the start.
- (Now need to evaluate better limiting non- S_p systematics for \sqrt{s}_p method for $\sqrt{s}).$

Some simplifications:

- Each of the decayed tracks is assumed to be in the same direction as the parent particle in terms of detector, θ (should fix). This affects the simulated detector acceptance and the momentum resolution formula.
- Each track's momentum magnitude along its momentum direction is smeared as detailed on p11. So no angular smearing.
- The AP variables are calculated using the components of the smeared decay particle momentum perpendicular and parallel to the parent particle's true flight direction.
- In particular the AP p_T variable is calculated as the average of the $|p_T|$ of the two tracks.
- Note that once the tracks are fitted to a common vertex and this neutral vertex is constrained to the nano beam spot, it is expected that the above assumptions are not unreasonable, especially in $r \phi$.

Backup: K_{S}^{0} plot (β deciles and $\cos \phi$ bins)

Unrolled plot with resolution

Graham W. Wilson (Univ. of Kansas)

Backup: A plot (β deciles and $\cos \phi$ bins)

hinvrsq bin index 1.710322e+07 Entries Mean > 1.003 900 Mean y 496.8 Std Dev x 0.00395 800 Std Dev y 280.6 тD² 700 600 500 10 400 300 200 100 ſ 1.03 1/r² 0.98 0.99 1.01 1.02 1

Unrolled plot with resolution

Backup: $\overline{\Lambda}$ plot (β deciles and $\cos \phi$ bins)

Backup: Example $1/r^2$ Distribution

 ${
m K_S^0},\ eta\in[0.99037,0.99418],\ \cos\phi\in[-0.02,0.0]$

Triple Gaussian fit with common mean of $1 + \mu$. (Note that histogram mean is currently used - overly sensitive to far tails ...)

Graham W. Wilson (Univ. of Kansas)

Backup: Example $1/r^2$ Distribution

A, same β as slide 13, $\cos \phi \in [-1.0, -0.98]$

Triple Gaussian fit with common mean of $1+\mu.$ (Note that histogram mean is currently used)

Graham W. Wilson (Univ. of Kansas)

Backup: Plots from Rodriguez Preprint

Note here ϕ definition differs by $\pi/2$.

Figure 2: Functional form of a set of symmetric decays $(m_1 = m_2 = m)$ in the Armenteros plot (left) and in the plot with elliptical coordinates (right).

In this case ($S_p = 1$). I included this mainly for illustration. It does not comport well with the plotting convention I used, nor the idea that there is a true AP ellipse, and a series of flattened elliptical coordinate plots for different reference values.

I think what is done is 5 different (M, m) assumptions are made, and the right plot is the analysis based on the PDG as reference (leading to the blue set at r = 1).