e+e- → tt in the continuum Open Issues

Roman Pöschl Based on work done by Yuichi Okugawa and Adrian Irles

ILD Top/HF Meeting January 2021

ILD Note for IDR

- Nice results for semi-leptonic mode
- Results are still based largely on identification of final state lepton and (in)famous Chi2 cut
- Started over summer to further scrutinise methods based on hadronic final state only

ILD-Note-2019-007

Master thesis Yuichi

Collab: IJCLab, U Tohoku **UPSaclay**

Typical efficiencies

<i>L</i> _1t				
General selection cuts	IDR-L	IDR-S		
Isolated Lepton	92.1%	92.1%		
$btag_1 > 0.8 \text{ or } btag_2 > 0.3$	81.2%	81.1%		
Thrust < 0.9	81.2%	81.1%		
Hadronic mass	78.2%	78.2%		
Reconstructed m_W and m_t	73.4%	73.4%		
t quark polar angle spectrum				
$\gamma_t^{had.} + \gamma_t^\ell > 2.4$	62.2%	61.8%		
$ p_{B\ bad} > 15 \mathrm{GeV}$	34.5%	33.9%		
"tt identification"	20 60%	30.2%		
	30.070	30.270		
b quark polar angle spectrum	30.070 n	50.270		

 $e_I^- e_R^+ \to t\bar{t}$ at 500 GeV

 $e_{R}^{-}e_{L}^{+} \rightarrow t\bar{t}$ at 500 GeV

General selection cuts	IDR-L	IDR-S	
Isolated Lepton	94.1%	94.0%	
$btag_1 > 0.8 \text{ or } btag_2 > 0.3$	84.9%	84.8%	
Thrust < 0.9	84.9%	84.8%	
Hadronic mass	82.2%	82.3%	
Reconstructed m_W and m_t	77.6%	77.5%	
t quark polar angle spectrum			
$\gamma_t^{had.} + \gamma_t^\ell > 2.4$	64.1%	64.1%	
b quark polar angle spectrum			
Vtx+Vtx	10.8%	10.3%	

Total cross section Typical efficiency 75% Independent of beam polarisation

Differential cross section

Note, difference for different beam polarisations Left hand polarisation more vulnerable to migrations **Requires information** from hadronic final state Vtx, Kaon as in bb-case

Methods	IDR-L	IDR-S
$1 L_{cut}$	22.1%	21.9%
2 L+Vtx	28.6%	28.4%
3 L + K	29.6%	29.3%
4 Vtx+Vtx	30.1%	29.7%
5 K + K	30.3%	29.9%
6 Vtx + K (same jet)	30.5%	30.1%
7 Vtx + K (different jet)	30.6%	30.2%

Table 4: Efficiency increase after the progressive application of the various methods introduced to ensure a correct association of the W boson and the b quark in case of $e_L^- e_R^+ \to t\bar{t}$. The final efficiency in the last line of this table corresponds to the efficiency given in the line " $t\bar{t}$ identification" of Table 3.

Hadronic final state observables - vtx-vtx

HK IAS 2021

"Perfect" agreement

b-jet energies for backward scattered tops

jetEb for $-0.9 < \cos \theta_t < -0.6$

- (Comparatively) small b-jet energies
- No clear difference between "regular" ttbar and "so-called" single-top events
- Thus "single top suppression" suppresses also a fraction low energetic b-jets

• Both produce low energetic b-jets in backward region

Missed tracks

• Polar angle distribution of the missing prongs for $(\cos\theta_Gen t < 0)$ and $(\cos\theta_Gen t > 0)$

- Clear difference in spectrum of missed tracks between forward and backward scattered tops
 - Result here after vertex recovery (before see talk by Yuichi on 17/12/20)
- Softer b = softer tracks in case of backward scattered tops

kward scattered tops 0)

HK IAS 2021

- Kaon polar angle spectrum shows deficit in forward region
- Bug or feature?

- Hadronic final state variables of ttbar require further understanding
- Tilted spectrum in vtx-vtx method, deficit for KaonxKaons
- What to do?
 - Revision of cuts?
 - Need to look at different maybe two dimensional distributions
 - b-quark/B-hadron reconstruction in tt-production is function of polar angle <u>and</u> b-jet energy (or b-hadron momentum)
- Revision of vertex recovery,
 - Alternative algorithms (SLD), TMVA?
- Calibration with simpler final states (ee->bb) at different energies (GigaZ, 250 GeV and 500 GeV)?
- Kaons and particle ID needs further understanding and scrutinisation
- tt at 500 GeV bears the potential of ~0.5% precision, but ...
 - a) Would prefer that all used methods lead to consistent results (and not that deficits compensate each other)
 - b) Without understanding what's going on there is no way to address the fully hadronic final state

- Who?
 - This is no option for Yuichi's PhD since it has been already subject of his master thesis
 - But ... Yuichi and Adrian could supervise a (sufficiently long) master thesis
 - All tools are there
 - Adrian said that we wants to look into that but help is for sure welcome

9

