Study of individual particle components within hadronic shower using graph neural networks

First steps and preliminary performance results

CALICE Collaboration meeting Vladimir Bocharnikov^{1,}

¹DESY, Hamburg Mar 26 2021

Calorimeter vision for hadronic showers

Ultimate goal and general approach

Set of hits in highly Particle interaction tree granular calorimeter Per particle: ID,E, **p**, **v**_{prod}, Vdecay $\overline{)}$

Calorimeter vision for hadronic showers

Ultimate goal and general approach

Graph representation of calorimeter event

First steps

Event graph:

- O Nodes calorimeter hits
- O Node features position, energy, (time)
- Edges neighbours within distance < Rmax (Radius graph)
- Edge weights 1 if pair of hits belong to same fundamental object (e/m sub-shower, track), otherwise 0
- O ML objective predict edge weights given the radius graph of event

GraphSAGE (SAmple and aggreGatE) architecture (Graph neural network model (GNN)):

Get graph context embeddings for node using aggregated information

Predict edge score for each pair of connected nodes using embedded features

Fundamental objects in hadronic showers

Shower components

Hadronic shower											
	MIP pa Mostly charg	articles ged hadrons		E/m showering particles e [±] ,γ, π ⁰ , η	Challenging particles n, K ₀ L, <i>v</i> ,						
With shower			W/o shower	Topology:	Topology: Hadronic shower/escape						
Topology: MIP track (before shower) + Hadronic shower											
MIP particles	E/m showering particles	Challenging particles	Topology: MIP track	e/m shower	MIP particles	E/m showering particles	Challenging particles				
()	()	()			()	()	()				

Fundamental objects in hadronic showers

Shower components

Hadronic shower											
	MIP pa Mostly charg	articles ged hadrons		E/m showering particles e [±] ,γ, π ⁰ , η	Challenging particles n, K₀L, ν,						
With shower			W/o shower		Topology: Hadronic shower/escape						
Topology: MIP track (before shower) + Hadronic shower				Topology:							
MIP particles	E/m showering particles	Challenging particles	Topology: MIP track	e/m shower	MIP particles	E/m showering particles	Challenging particles				
()	()	()			()	()	()				

Truth information from Monte-Carlo

Algorithm to find truth e/m objects

Simulations

Geant4 (v10.03.p02) QGSP_BERT_HP using CALICE AHCAL geometry

Pure energy deposition in cells (before digitalisation and reconstruction)

Truth electromagnetic sub-shower definition:

"Electromagnetic" particles: e^{\pm} , γ , π^{0} , η

Energy threshold - *0.1GeV* (arbitrary now) If MC particle is "electromagnetic", all it's "electromagnetic" daughters compose e/m shower and removed from further consideration

Corresponding simulated hits compose sub-shower, 0.5MIP cut: *E*_{hit}>0.25MeV

MC history for **ionising particles** is more complicated to easily define individual objects (tracks). Work in progress

Constructing e/m link graph

Input and training target

Input graph

- Radius graph with calorimeter hit nodes (x,y,z,E)
 Rmax=45mm
- Links matrix of shape (Nlinks, 2) represent whether his are closer than Rmax, have no attribute

Target for e/m sub-showers

• For all e/m objects construct it's own radius graph and link attribute equal 1

Datasets and model parameters

Train & test

Train dataset

- 100 event graphs
 - Pure energy deposition in calorimeter cells (before digitalisation and reconstruction)
 - 10,20,40 GeV pion samples
 - 88702 edges to process
 - 39994 "truth" electromagnetic links

Test dataset

- ~19K events
 - Pure energy deposition in calorimeter cells (before digitalisation and reconstruction)
 - 10,20,40 GeV pion samples

Model

GraphSAGE GNN

8 layers with 16 hidden channels + 1 linear output layer to convert node embeddings to edge scores

Prediction of edge scores

Binary cross entropy loss

Energy sum distributions for datasets

DESY. | CaloVision with GNN, Mar 26 2021 | Vladimir Bocharnikov

Electromagnetic fraction of hadronic showers

Preliminary results on larger dataset

Work in progress...

Prediction vs truth correlation

Electromagnetic fraction for 10,20,40 GeV pions

□ Shape of e/m fraction distribution is not described well

Satisfying correlation of prediction vs truth

Slight overestimation of e/m fraction for punch-through events

Electromagnetic fraction of hadronic showers

Preliminary results on larger dataset

Work in progress...

Correlation of Fe/m with energy sum for 10,20,40 GeV MC pions

Predicted e/m fraction correlate with energy sum (less pronounced than truth fraction)

□ No leakage correction

☑ Can be used for global software compensation

C Resulting electromagnetic structure of hadronic shower can be used for GNN energy reconstruction

Summary & outlook

Monte-Carlo simulations provide detailed information about hadronic shower sub-structure

- ☑ Can be reconstructed exploiting high granularity
- GNN approach shows promising results to act as tool for reconstructing individual particles within hadronic showers
 - GNN reconstruction of electromagnetic part within hadronic shower gives physically meaningful output
 - Benchmark simulations against test beam data
 - □ Architecture and model parameters can be optimised for better performance
 - Include energy contribution of different particles to same hits (in contrast to used "Geiger" mode)

□ Include timing information

- □ Repeat study for reconstruction of ionising tracks within hadronic showers
- Individual particle separation method is under development

E/m showers

Algorithm to find truth objects

"Electromagnetic" particles: e^{\pm} , γ , π^{0} , η

Energy threshold - 0.1GeV (arbitrary now)

If MC particle is "electromagnetic", all it's "electromagnetic" daughters compose e/m shower and removed from further consideration

Corresponding simulated hits compose sub-shower,

0.5MIP cut: *E*_{hit}>0.25MeV

"**lonising**" particles: π^{\pm} , p^{\pm} , μ^{\pm}

Energy threshold - 0.1GeV (arbitrary now)

If MC particle is "Ionising", all it's "Ionising" daughters compose ion shower (not individual tracks)

Corresponding hits are collected from SimCalorimeterHit collection (*E_{hit}>0.25MeV*)

Example of ~6 GeV neutron within a 40 GeV pion shower

Going down the Monte-Carlo tree

Color coding represent different branches of MC tree corresponding to direct daughters of neutron

