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The need for software compensation..
> Hadronic calorimeter typically

has lower energy-resolution
compared to electromagnetic
calorimeter;

> Reason: hadronic showers
deposit an unpredictable fraction
of ’invisible energy’;

> nuclear binding energy (energy to
’break up’ nucleus)

> ’escaped’ particles (neutrinos,
neutrons, )

> muons, that only deposit minimum
ionizing energy.

> Upshot: a hadronic calorimeter
cannot necessarily measure all
the energy of a hadron shower
event.

Example diagram describing ’missing
energy’.

Jack Rolph | UHH | March 24, 2021 | Page 2



The need for software compensation..

EM/Hadronic response ratio can
be ’compensated’ for in a number
of ways:

> Calorimeter Design: i.e. use
correct materials at correct
thickness in
absorber/scintillator i.e. ZEUS;

> Dual Readout: use Cerenkov
detectors as well as
scintillators to estimate
electromagnetic fraction,
shower by shower;

> Software Compensation:
use software to weight
energy of hadron shower
o�ine.
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Goals.

Develop an updated weighting technique in order to
compensate hadron showers, using machine learning.

> overcome limitations of previous methods;
> utilize the high granularity of the calorimeter for compensation;
> does time improve software compensation?
> does the algorithm work on actual data?
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The Problem.

> "(This Figure) shows the histograms for the reconstructed energy for (a set of
trained and untrained test samples applied to a deep software compensation
network)."1

> " It shows that the deep network architecture with many weights leads to
over-�tting on the limited amount of data beam energies."

> "The ’trained on’ true beam energies are precisely learned while the ’not trained
on’ energies cannot be reconstructed properly."

1Erik Buhmann. “Deep Learning based Energy Reconstruction for the CALICE HCAL”.
Master’s Thesis. University of Hamburg, July 2019.
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Why?.
> To answer this, one

needs to inspect the
correlations between
observables in
hadron showers.

> Principal Component
Analysis (PCA) on
covariance matrix of
shower-development
co-ordinates
performed;

What one learns:

> The local
development of a
hadron shower and
the total energy the
AHCAL calorimeter
measures are only
very weakly
correlated.
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Why?.

> We may infer a couple of things
from this:

> Reconstructed energy loses
predictive power at higher
energy, due to leakage and
shower �uctuations;

> The total energy measured by
the calorimeter has little to do
with the cell-to-cell response
of the calorimeter.

> Most of the information relevant
to weighting the shower
energies based on the
measured energy are
contained in the local
correlations.
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The CALICE State-of-the-Art.

> Ehit distribution
split into bins of
equal frequency
probability;

> i.e. equal likelihood
(on average!) of hits
falling into each bin.

> Three weights
de�ned, per bin,
using Chebyshev
Polynomial;

> Fraction of shower
energy falling into
each bin is
weighted according
to the Esum. wb = wb0 + wb1

(
Esum

S

)
+ 2wb2

((
Esum

S

)2

− 1

)
(1)

S is a normalization constant, 150 GeV
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Jack’s SCNET.

> Uses ’graph network’;
> builds graph from cells (k-NN)
> applies NN convolutions to

graphs to predict
compensated energy.

> The network only sees each graph;
information is never shared between
graphs;

> The network cannot learn the shape,
nor the energy of the hadron
shower.

> Caveat: inference time is slow
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Jack’s SCNET.

Caption
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Experiment.
> Train state of the art and SCNet on a set of simulated π−

showers observed with AHCAL.
> Simulation: 10-80 GeV, in steps of 10 GeV;
> Run the respective models to:

> interpolate between trained energies (i.e. 15 GeV)
> extrapolate to both lower and higher shower energies (i.e. 120

GeV)

> Measure energy resolution:

Rres =
σÊsum

Êsum
=

a√
Ebeam

⊕ b(⊕ c

Ebeam
) (2)

> Ensure linear response:

Êres = mEBeam + c (3)

Jack Rolph | UHH | March 24, 2021 | Page 11



Science Sass.

Quoted directly from Wigman’s
Calorimetry for Collider
Physics, an Introduction:
"some authors use RMS90 (as a
measurement of σE ) in order to
make the results less dependent
on the tails of the signal
distributions they measure, and
thus look better...this misleading
practice is followed by the
proponents of Particle Flow
Analysis" Barbie misses the point.
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My Choice Of Metric.

> KISS - "keep it simple, stupid";

> Use robust estimators of
normally-distributed mean and
standard deviation.

> Êsum ≈ median(N (µ, σ)) ≈ µ;

> MAD(Êsum) =

median
(∣∣∣Êsumi −median(Êsum)

∣∣∣)
> σ ˆEsum

≈ knorm MAD(Êsum)

> Main reason for choice:
bootstrapping takes a long time -
simple to calculate of these
statistics.

> Con�dence/errors mandatory for
correct �t values.
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Results: Resolution, Simulation.

a√
E
⊕ b a σa b σb χ2 NDF

Uncompensated 0.501 4.517× 10−3 0.128 5.697× 10−4 270.433 13.000
CALICE LSC 0.489 2.422× 10−3 0.055 5.653× 10−4 734.629 13.000
SCNet, w/o Time 0.398 2.075× 10−3 0.052 4.221× 10−4 69.626 13.000
SCNet, w Time 0.373 1.984× 10−3 0.051 3.950× 10−4 58.431 13.000

What one learns:
> Staggering improvement in

resolution (as we de�ned it)
using machine learning.

> As predicted, network is able
to both interpolate and
extrapolate at higher
energies.

> CALICE ’state-of-the-art’
method weights all showers
with energy above 80GeV to
exactly 80 GeV.

> Below the training range,
both methods over-predict
the energy of the hadron
shower.
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Results: Linearity, Simulation.

y = mx+ c m σm c σc χ2 NDF

Uncompensated 0.911 4.193× 10−4 −0.325 0.012 1.136× 103 13.000
CALICE LSC 0.988 2.776× 10−4 0.858 8.580× 10−3 2.441× 104 13.000
SCNet, w/o Time 0.995 2.501× 10−4 0.581 7.652× 10−3 8.441× 103 13.000
SCNet, w Time 0.995 2.244× 10−4 0.575 7.059× 10−3 8.168× 103 13.000

What one learns:
> Staggering improvement in

resolution (as we de�ned it)
using machine learning.

> As predicted, network is able
to both interpolate and
extrapolate at higher
energies.

> CALICE ’state-of-the-art’
method weights all showers
with energy above 80GeV to
exactly 80 GeV.

> Below the training range,
both methods over-predict
the energy of the hadron
shower.
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Results: Resolution, Data.

a√
E
⊕ b a σa b σb χ2 NDF

Uncompensated 0.399 4.356× 10−3 0.121 5.008× 10−4 80.818 4.000
CALICE LSC 0.496 2.391× 10−3 0.060 5.416× 10−4 1.430× 103 4.000
SCNet, w/o Time 0.385 2.309× 10−3 0.065 3.988× 10−4 41.497 4.000

What one learns:
> Staggering improvement in

resolution (as we de�ned it)
using machine learning.

> As predicted, network is able
to both interpolate and
extrapolate at higher
energies.

> CALICE ’state-of-the-art’
method weights all showers
with energy above 80GeV to
exactly 80 GeV.

> Below the training range,
both methods over-predict
the energy of the hadron
shower.
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Results: Linearity,Data.

y = mx+ c m σm c σc χ2 NDF

Uncompensated 0.901 3.700× 10−4 0.029 9.307× 10−3 536.709 4.000
CALICE LSC 0.956 2.977× 10−4 1.948 9.926× 10−3 2.561× 104 4.000
SCNet, w/o Time 0.970 2.776× 10−4 1.050 7.973× 10−3 6.563× 103 4.000

What one learns:
> Staggering improvement in

resolution (as we de�ned it)
using machine learning.

> As predicted, network is able
to both interpolate and
extrapolate at higher
energies.

> CALICE ’state-of-the-art’
method weights all showers
with energy above 80GeV to
exactly 80 GeV.

> Below the training range,
both methods over-predict
the energy of the hadron
shower.
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June 2018 Test-beam Data Compensation, 10GeV.
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June 2018 Test-beam Data Compensation, 40GeV.
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June 2018 Test-beam Data Compensation, 80GeV.
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June 2018 Test-beam Data vs Simulation.

What we learn:
Simulation and data have quite di�erent energy spectra at 120
GeV.
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June 2018 Test-beam Simulation Compensation, 120GeV.

What we learn:

Neural Network compensation consistent with 120 GeV in simulation.
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June 2018 Test-beam Data Compensation, 120GeV.

What we learn:

Neural Network compensation less consistent with 120 GeV in data.

Jack Rolph | UHH | March 24, 2021 | Page 23



June 2018 Test-beam Simulation Compensation, 5GeV.

What we learn:

Both methods overcompensate 5 GeV hadron showers in simulation.
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Compensated Energy vs Energy.

What we learn:

Both methods weight low energy hadronic hits up in energy to compensate.
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Conclusion.

> A software compensation algorithm has been developed
through use of graph networks;

> The method devised produces a stochastic term of 38.5% in
data

> No edge of the world; the program can interpolate and
extrapolate from data;

> Reason this works: the energy we are compensating is
uncorrelated with the total properties of the shower

> How does software compensation improve clustering?
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Simulation Information: Summary.

Simulation of π− hadronic showers
using Geant4 in the AHCAL were used:

> Physics list: QGSB_BERT

> full detector simulation (inc. SiPM
saturation/noise thresholds etc.)

> Based on June 2018 CALICE
Testbeam taken at SPS;

> Actual data used to validate;

> Simulated particle energies:
10-80 GeV in steps of 5GeV
+ 90 GeV, 120 GeV

Example event display of a 80 GeV
negative pion detected by the AHCAL
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