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The need for software compensation.

> Hadronic calorimeter typically
has lower energy-resolution
compared to electromagnetic
calorimeter;

> Reason: hadronic showers
deposit an unpredictable fraction
of "invisible energy’;
> nuclear binding energy (energy to
‘break up’ nucleus)
> ’escaped’ particles (neutrinos,
neutrons, )
> muons, that only deposit minimum
ionizing energy.

.
Invisible Energy ‘Z/n\‘

%

> Upshot: a hadronic calorimeter Example diagram describing ‘'missing

cannot necessarily measure all energy .
the energy of a hadron shower
event.
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The need for software compensation.

EM/Hadronic response ratio can
be ‘compensated’ for in a number

of ways:

> Calorimeter Design: i.e. use
correct materials at correct Electromagnetic sector
thickness in (Eo=toE )% [E = k)
absorber/scintillator i.e. ZEUS; nﬂpfodumén

Incoming hadron, Sampling

> Dual Readout: use Cerenkov Encrsy E) Hé%'ﬁéﬂf,‘{? EV’S‘E o+ By -
detectors as well as
scintillators to estimate [E,,_(l ~5E) & (B =g, )
electromagnetic fraction, Hadronic sector

shower by shower;

> Software Compensation:
use software to weight
energy of hadron shower
offline.
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Goals

Develop an updated weighting technique in order to
compensate hadron showers, using machine learning.
> overcome limitations of previous methods;
> utilize the high granularity of the calorimeter for compensation;
> does time improve software compensation?
> does the algorithm work on actual data?
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The Problem
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> "(This Figure) shows the histograms for the reconstructed energy for (a set of
trained and untrained test samples applied to a deep software compensation
network)."'

> "It shows that the deep network architecture with many weights leads to
over-fitting on the limited amount of data beam energies."

> '"The 'trained on’ true beam energies are precisely learned while the 'not trained
on’ energies cannot be reconstructed properly."

'Erik Buhmann. “Deep Learning based Energy Reconstruction for the CALICE HCAL".
Master’s Thesis. University of Hamburg, July 2019. UH
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> To answer this, one

needs to inspect the
correlations between
observables in
hadron showers.

Principal Component
Analysis (PCA) on
covariance matrix of
shower-development
co-ordinates
performed;

one learns:

The local
development of a
hadron shower and
the total energy the

AHCAL calorimeter
measures are only
very weakly
correlated.
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> We may infer a couple of things
from this:

CAI.l@

> Reconstructed energy loses
predictive power at higher
energy, due to leakage and
shower fluctuations;

> The total energy measured by
the calorimeter has little to do
with the cell-to-cell response
of the calorimeter.

> Most of the information relevant
to weighting the shower
energies based on the
measured energy are
contained in the local
correlations.
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The CALICE State-of-the-Art

300000

> FEy;¢ distribution
split into bins of
equal frequency
probability;

250000

. 200000
> i.e. equal likelihood

(on average!) of hits

falling into each bin. oo

> Three weights 100000
defined, per bin,
using Chebyshev

. 50000
Polynomial;

> Fraction of shower ol - .
energy falling into Epie [MIP]
each bin is

weighted according E E 2
to the Esym. wp = Wy + Wp1 < ng) + 2wpa <(Ssum) — 1) ()]

S is a normalization constant, 150 GeV
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Jack’s SCNET

> Uses "graph network’;

Lo Xix

-
fmodel (';%‘) = yi

fmndel (w ) = yi+1
Xis1

> builds graph from cells (k-NN)

> applies NN convolutions to
graphs to predict
compensated energy.

> The network only sees each graph;
information is never shared between
graphs;

> The network cannot learn the shape,
nor the energy of the hadron
shower.

> Caveat: inference time is slow
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Jack’s SCNET

SCNet
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> Train state of the art and SCNet on a set of simulated 7~
showers observed with AHCAL.

Simulation: 10-80 GeV, in steps of 10 GeV;

Run the respective models to:

> interpolate between trained energies (i.e. 15 GeV)
> extrapolate to both lower and higher shower energies (i.e. 120
GeV)

> Measure energy resolution:

v

\%

Ryos = Boum =4 g © 2)
e Esum V Ebeam Ebeam

> Ensure linear response:

A~

Eres = mEBeam + ¢
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Science Sass

Quoted directly from Wigman'’s

Calorimetry for Collider | TRIED Tn RUTiMYSELF IN
YOURISHOES

Physics, an Introduction:
"some authors use RMSyq (as a
measurement of o) in order to
make the results less dependent
on the tails of the signal
distributions they measure, and
thus look better...this misleading
practice is followed by the
proponents of Particle Flow
Analysis"

Barbie misses the point.
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My Choice Of Metric

> KISS - "keep it simple, stupid”;

> Use robust estimators of
normally-distributed mean and
standard deviation.

> Esum ~ median(N (i, 0)) &

> MAD(FEsym) =
median (‘Esumi — median(Esum) D

Es;m ~ knorm MAD(Esum)

> Main reason for choice:
bootstrapping takes a long time -
simple to calculate of these
statistics.

> Confidence/errors mandatory for
correct fit values.
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Mean: 69.805 GeV

—— Std. Deviation: 12.125 GeV

Median: 71.734 GeV
MAD: 9.340 GeV
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Results: Resolution, Simulation

~—— Uncompensated, Fit
CALICE LSC, Fit
SCNet w/o Time, Fit
SCNet, w Time, Fit

ER T Uncompensated, Training
o % ¢ Uncompensated, Validation What one learns:
= % CALICE LSC, Training
i s ¢ CALICELSC, Validation Staggering improvement in
5 %  SCNet, w/o Time, Training lution (as we defined it)
N S '] #  SCNet w/o Time, Validation rego el 5 W . !
@ . ° % SCNet, w Time, Training using machine learning.
# SCNet, w Time, Validation
0.025 As predi.cted, network is able
to both interpolate and
extrapolate at higher
energies.
CALICE ’state-of-the-art’
. . method weights all showers
° with energy above 80GeV to
exactly 80 GeV.
40 60 80 100 120
Egeam [GeV] Below the training range,
a oa b o x> NDF both methods over-predict
the energy of the hadron
el 0.501 4.517 x 1072 0.128 5.697 x 10~*  270.433  13.000 shower.
CALICE LSC 0.489 2422 x 1073 0.055 5.653 x 107%  734.629 13.000

SONERVERIEN 0.398  2.075 x 1073 0.052  4.221 x 107*  69.626  13.000
SCNet, w Time 0.373  1.984 x 107*  0.051 3.950 x 107 58.431 13.000
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Results: Linearity, Simulation

120 . ~—— Uncompensated, Fit
o CALICE LSC, Fit
100 ° —— SCNet, w/o Time, Fit
) SChet, w Time, Fit
. . % Uncompensated, Training
= 80 e # Uncompensated, Validation
Q #  CALICE LSC, Training
o
—= 60 #  CALICE LSC, Validation
£ % SCNet, w/o Time, Training
<'~l:l" #  SCNet, w/o Time, Validation
40 & SCNet, w Time, Training
®  SCNet, w Time, Validation
20
-
Q
1.4
- 12 .
G Lot e R R e T T T Y '
S 0.8 .
= 0.6
& 04
0.2
0'00 20 40 60 80 100 120
Egeam [GeV]
y=mz+c m Tm c e x> NDF
(Ofofeel I 0.911  4.193 x 107% —0.325 0.012  1.136 x 10°  13.000
CALICE LSC 0.988 2.776 x 107*  0.858 8.580 x 1073 2.441 x 10* 13.000
SONEREREE 0.995 2,501 x 1074 0.581  7.652 x 1073 8.441 x 10 13.000
SOERMIAEN 0.995 2244 x 107%  0.575  7.059 x 1073 8.168 x 10°  13.000

Jack Rolph | UHH | March 24, 2021 | Page 15

What one learns:

Staggering improvement in
resolution (as we defined it)
using machine learning.

As predicted, network is able
to both interpolate and
extrapolate at higher
energies.

CALICE 'state-of-the-art’
method weights all showers
with energy above 80GeV to
exactly 80 GeV.

Below the training range,
both methods over-predict
the energy of the hadron
shower.




Results: Resolution, Data

0.200
~— Uncompensated, Fit
0.175 CALICE LSC, Fit
~——— SCNet w/o Time, Fit
0.150 #  Uncompensated, Training
2 * ® Uncompensated, Validation What one Iearns:
af 50.125 #  CALICE LSC, Training
gy & CALICE LSC, validation Staggering improvement in
=/£0.100 % SCNet, w/o Time, Training 88 . 8 Imp " a
S . & SCet wio Time, Validation resolution (as we defined it)
<L 0.075 using machine learning.
o«
0.050 - As predicted, network is able
0.025 to both interpolate and
extrapolate at higher
0009 energies.
Te 12
flivo CALICE 'state-of-the-art
<08 % & = e state-of-the-ar
2 o8 LIS x . . method weights all showers
2 04 . with energy above 80GeV to
= 02 exactly 80 GeV.
0.04 20 40 60 g0 100 120 -
Epeam [GeV] Below the training range,

- > both methods over-predict
VE @b a Ta b T x° NDF the energy of the hadron
TSl 0.399 4.356 x 10~%  0.121 5.008 x 1074 80.818  4.000 Sl
CALICE LSC 0.496 2.391 x 1073 0.060 5.416 x 107 1.430 x 10*  4.000
SOESVEREE 0.385  2.309 x 1073 0.065 3.988 x 1074 41.497  4.000
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Results: Linearity,Data

120 Uncompensated, Fit
* ~——— CALICE LSC, Fit
100 * SCNet, wfo Time, Fit
4 Uncompensated, Training
_ 80 * * Un(nmpensaled‘, Validation What one Iearns:
> #  CALICE LSC, Training
g #  CALICE LSC, Validation . . .
= 60 %  SCNet, wjo Time, Training Stagge_rlng improvement in
5 & SCNet, w/o Time, Validation resolution (as we defined it)
<u.| 40 using machine learning.
As predicted, network is able
20 2
to both interpolate and
extrapolate at higher
I.Q energies.
T2 E S T— "
G 1.0 x x % e * ] ¥ CALICE 'state-of-the-art’
o gg * method weights all showers
E 0.4 with energy above 80GeV to
0.2 exactly 80 GeV.
005 20 40 60 80 100 120 -
Egeam [GeV] Below the training range,

5 both methods over-predict
y=mz+c m am ¢ Oc x° NDF the energy of the hadron
el 0.901  3.700 x 10~*  0.029 9.307 x 103 536.709  4.000 shower.

CALICE LSC 0.956 2.977 x 1071 1.948 9.926 x 1073 2.561 x 107 4.000
SENCWERINE 0970 2.776 x 107* 1.050 7.973 x 10~%  6.563 x 10°  4.000
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June 2018 Test-beam Data Compensation, 10GeV

Epeam = 10 GeV

Uncompensated
N:5.363 x 10%
X:9.063
0.25 0, :1.759
sx:0.052
Ky : 1.881
median(x) : 9.039
0.20 MAD(x) : 1.623
CALICE LSC
N :5.363 x 10%
X:10.973
Ox:1.924
0.15 T 5:-0210
ky:2.353
median(x) : 11.010
MAD(x) : 1.766
SCNet, w/o Time
N:5.363 x 10*
X:10.662
Ox : 1.600
0.05 T 510767
ky:4.146
median(x) : 10.592
MAD(x) : 1.446

0.00 === Epeam

2 4 6 8 10 12 14 16 18
Esum [GeV]

0.10
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June 2018 Test-beam Data Compensation, 40GeV
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Uncompensated
N:1.115 x 10°

X :35.580

Ox :5.792

sy :-0.947
ky:2.722
median(x) : 36.146
MAD(x) : 4.879

CALICE LSC
N:1.115 x 10°

X :40.660

0y :5.839
s¢:-1.377
ky:4.344
median(x) : 41.549
MAD(x) : 4.444
SCNet, w/o Time
N:1.115 x 103
X:39.920

0Oy : 4.512
Sx:-0.999
kx:5.622
median(x) : 40.311
MAD(x) : 3.545

Epeam
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June 2018 Test-beam Data Compensation, 80GeV

Epeam = 80 GeV

Uncompensated
0.08 N:1.158 x 105

X :69.805
0Ox:12.125
sx:-1.211

Ky : 3.875
median(x) : 71.734
0.06 MAD(x) : 9.340

CALICE LSC
N:1.158 x 10°
X:73.534
0x:10.127
S¢1-2.443

0.04 Ky : 8.080
median(x) : 76.330
MAD(x) : 5.643
SCNet, w/o Time
N:1.158 x 103

0.02 X:75.651

0Ox:9.720

Syt -1.649
ky:8.544
median(x) : 77.457
MAD(x) : 6.075

0.00 === Epeam

20 40 60 80 100 120 140
Esum [GeV]
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June 2018 Test-beam Data vs Simulation

Epeam = 120 GeV

0.007 <
l\_l _: 2.68E+04
0.006 5 5 oo
Sx 1 -1.33E+00
ky : 3.74E+00
0.005 .
l\_l : 1.19E+05
:9.93E+01
0004 T )(;, : 1.80E++01
Sx : -1.30E+00
0003 kx : 3.98E+00
0.002
0.001
0.000
60 80 100 120 140 160
Ecum [GeV]

What we learn:

Simulation and data have quite different energy spectra at 120




June 2018 Test-beam Simulation Compensation, 120GeV

Epeam = 120 GeV

Uncompensated

0.08 N:2.684 x 10

X :104.360

0,:19.955

S¢:-1.327

k13743

median(x) : 106.821

0.06 MAD(x) : 15.922

CALICE LSC

N:2.684 x 104

X : 83.860

0,:9.724

Sy :-3.835

0.04 ky:22.352

median(x) : 85.886

MAD(x) : 5.219

SCNet, w/o Time

N :2.684 x 10°
X:110.550

0.02 0,1 14.225

5¢:-2.743

Ky : 11.059

median(x) : 114.147

MAD(x) : 7.810

0.00 === Egeam
25 50 75 100 125 150 175 200 225
Esum [GeV]

What we learn:

Neural Network compensation consistent with 120 GeV in simulation.
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June 2018 Test-beam Data Compensation, 120GeV

0.10

0.08

0.06

0.04

0.02

0.00

What we learn:

Neural Network compensation less consistent with 120 GeV in data.

Epeam = 120 GeV

\

25

50

75

100 125 150 175 200
Esum [GeV]

Uncompensated
N:1.187 x 10%
%1:99.332

0, :18.041
5¢:-1.304

Ky :3.981
median(x) : 102.629
MAD(x) : 13.642
CALICE LSC
N:1.187 x 10°
%:83.762
0,:11.183
5¢:-10.454

Ky :276.103
median(x) : 85.897
MAD(x) : 4.308
SCNet, w/o Time
N:1.187 x 105

Kyt
median(x) : 108.578
MAD(x) : 9.153

Epeam
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June 2018 Test-beam Simulation Compensation, 5GeV

Epeam = 5 GeV

Uncompensated
0.5 N:1.621x 10%
%:4.543
05:1.073
5010514
0.4 kx:1526
: median(x) : 4.486
MAD(x) : 1.019
CALICE LSC
N:1.621 x 10
0.3 X:6.349
0,:0.939
5¢:-0.175
ky:2.386
median(x) : 6.309
0.2 MAD(x) : 0.824
SCNet, w/o Time
N:1.621x 10%
%16.346
0.1 01 1299

median(x) : 6.152
MAD(x) : 0.849

0.0 === Egeam

4 6
Esum [GeV]

What we learn:

Both methods overcompensate 5 GeV hadron showers in simulation.
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Compensated Energy vs Energy

20.0 20.0

175
10%
15.0 10°

103 12,5

£10.0 102
1i 2

0 75
5.0 10
10
2.5

0 0
080 255 5.0 7.5 10.0 12.515.0 17.5 20.0 0 080 25 5.0 7.5 10.0 12.5 15.0 17.5 20.0 :°

Enit Enie

What we learn:

Both methods weight low energy hadronic hits up in energy to compensate.
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Conclusion

> A software compensation algorithm has been developed
through use of graph networks;

> The method devised produces a stochastic term of 38.5% in
data

> No edge of the world; the program can interpolate and
extrapolate from data;

> Reason this works: the energy we are compensating is
uncorrelated with the total properties of the shower

> How does software compensation improve clustering?

CAI.l@

Jack Rolph | UHH | March 24, 2021 | Page 26



Simulation Information: Summary

Combined Showers.

Simulation of 7~ hadronic showers * Eun = 985096V
using Geant4 in the AHCAL were used:

> Physics list: QGSB_BERT

10?

> full detector simulation (inc. SiPM
saturation/noise thresholds etc.)

> Based on June 2018 CALICE
Testbeam taken at SPS;

Energy [MIP]

> Actual data used to validate;

> Simulated particle energies:
10-80 GeV in steps of 5GeV

Example event display of a 80 GeV
+ 90 GeV, 120 GeV

negative pion detected by the AHCAL

UH
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