

Katja Krüger (DESY)

CALICE Collaboration meeting, IJClab/LLR 13 October 2022

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004761.

AHCAL Plans I

Maximise output of existing large prototype

- Further testbeam program with large ILC prototype
 - SiW ECAL + AHCAL with better ECAL
 - AHCAL with tungsten stack
 - Ideally should include TCMT, especially for higher energies
 - Absorber structure exists
 - Active layers could be old scintillator bars with new SiPMs & readout electronics, or maybe SDHCAL layers?
 - Timescale: 2024+
 - Need to ensure sufficient funding not only for data taking, but also data analysis
- "Generic" Developments
 - Megatiles: performance of latest prototypes very satisfactory for MIPs -> include a layer in large prototype to see calorimetric performance

AHCAL Plans II

Develop technology for further applications

Studies towards AHCAL @ circular collider

- Continuous running
 - KLauS ASIC already supports continuous operation
 - SPIROC needs changes, but SPIROC3 should support continuous running
 - Also interfaces (power supplies) need to support this
- High data rates at Z pole
 - Expect ~100 kHZ physics rate
 - For comparison: ~6 orders of magnitude more than HZ, but nearly an order of magnitude less than HGCAL L1A rate and smaller occupancy
 - Will have an effect on the readout system
 - Much higher data rates than for ILC -> faster bus/links
 - Maybe: change of the architecture needed (one link per ASIC instead of one bus reading many ASICs)
- Need realistic estimate of expected conditions -> simulation with CLD detector model
 - Understand active cooling needs
 - re-optimise absorber structure
- Develop hardware that can cope with these conditions

