



# Higgs CPV Mixing at 1 TeV ILC

IVANKA BOZOVIC-JELISAVCIC, TATJANA AGATONVIC-JOVIN\*, GORDANA MILUTINOVIC-DUMBELOVIC, GORAN KACAREVIC, NATASA VUKASINOVIC, IVAN SMILJANIC – VINCA INSTITUTE OF NUCLEAR SCIENCES, UNIVERSITY OF BELGRADE

MIRKO RADULOVIĆ, JASNA STEVANOVIĆ – UNIVERSITY OF KRAGUJEVAC

# Outline



- Motivation
- Ways to probe CPV in the Higgs sector
- Method of the analysis
- Inclusive Higgs production in ZZ-fusion
  - Sensitive observable
- Higgs decays (as a cross-check):  $h \ \rightarrow WW$  and  $h \ \rightarrow ZZ$
- Preselection exercise
- Production request



### Motivation





TERRA dgnita HIGGS Higgs mass-• Hierarchy problem Higgs vacuum – energy of the **CPV IN TH** Universe HIGGS SECTO Higgs and DM -Higgs invisible decays Higgs and cosmic inflation – is Higgs the inflaton?



### Motivation

- CPV (BSM physics) is required to explained bariogenesis
- CPV provided in the SM (i.e. CKM matrix) is insufficient
- Could CP be violated in the Higgs sector?
- hVV vertex (CPV at a loop level):

 $\mathscr{L}_{_{VV\!H}} \sim M_{_Z}^{_2} \left( 1/v + \frac{a_v}{\Lambda} \right) Z_\mu Z^\mu h + \left( \frac{b_v}{2\Lambda} \right) Z_{\mu\nu} Z^{\mu\nu} h + \left( \frac{\widetilde{b}_v}{2\Lambda} \right) Z_{\mu\nu} \widetilde{Z}^{\mu\nu} h$ 

• Hff vertex (CPV at a tree level):

$$\mathscr{L}_{\rm ffH} \sim g\, f$$
 (  $\cos\psi_{\rm CP}$  +  $i\,\gamma^5\,\sin\psi_{\rm CP}$  )  $f\,h$ 









# Ways to probe CPV in the Higgs sector

• SM-like Higgs boson could be a mixture of scalar (*H*) and pseudo-scalar state (*A*):

 $h_m = H \cdot \cos\psi_{CP} + A \cdot \sin\psi_{CP}$ 

- Correlation between spin orientations of VV (or ff) carries information on the Higgs CP state
- Numerous Higgs production processes at linear machines (*hZ*, *WW*-fusion, *ZZ*-fusion) at various c.m. energies
- Both Higgs production and decays can be exploited







# Method of the analysis



- Define sensitive observable(s)
- Event selection:
  - Preselection
  - MVA analysis
- PDFs of the reconstructed CPV observable for signal and background
- Pseudo-experiment to fit our reconstructed sensitive observable in order to extract CPV mixing angle
- Multiple pseudo-experiments (with the fixed Higgs CPV mixing angle) to determine statistical uncertainty from the pull distribution







- Information on spin orientations of VV states is contained in the angle between production (decay) planes
- Angle between planes is angle between unit vectors orthogonal to those planes:

$$\widehat{n}_{1} = \frac{q_{e_{i}} - \times q_{e_{f}}}{|q_{e_{i}} - \times q_{e_{f}}|} \quad \text{and} \quad \widehat{n}_{2} = \frac{q_{e_{i}} + \times q_{e_{f}}}{|q_{e_{i}} + \times q_{e_{f}}|}$$

- $\phi = a \arccos(\hat{n}_1 \cdot \hat{n}_2)$
- where a defines how the second (positron) plane is rotated w.r.t. the first (electron) plane; If it falls backwards (as illustrated) a=-1, otherwise a=1. Direction of Z in the e<sup>-</sup> plane regulates the notion of direction (fwd. or back.)

• 
$$a = \frac{q_{Z_e^-} \cdot (\hat{n}_1 \times \hat{n}_2)}{|q_{Z_e^-} \cdot (\hat{n}_1 \times \hat{n}_2)|}$$





### Higgs decays (as a cross-check): $H \rightarrow WW^*$ and $H \rightarrow ZZ^*$

• Unit vectors orthogonal to decay planes are now opposite:

$$\hat{n}_1 = \frac{q_{f(V)} \times q_{\overline{f}(V)}}{\left|q_{f(V)} \times q_{\overline{f}(V)}\right|} \quad \text{and} \quad \hat{n}_2 = \frac{q_{f(V^*)} \times q_{\overline{f}(V^*)}}{\left|q_{f(V^*)} \times q_{\overline{f}(V^*)}\right|}$$

• 
$$\phi = a \arccos(-\hat{n}_1 \cdot \hat{n}_2)$$

• where *a* defines how the second (off-shell boson  $V^*$ ) plane is rotated w.r.t. the first (on-shell boson) plane; If it falls backwards (as illustrated) a = -1, otherwise a = 1. Direction of the on-shell boson (*V*) regulates the notion of direction (fwd. or back.)

• 
$$a = \frac{q_V \cdot (\hat{n}_1 \times \hat{n}_2)}{|q_V \cdot (\hat{n}_1 \times \hat{n}_2)|}$$

• It is essential to distinguish between fermion and antifermion (jet-charge in case of semileptonic ZZ decays)







 $J_m^+$  (red circles),  $J_h^+$  (green squares),  $J_h^-$  (blue diamonds)

S. Bolognesi et al., On the spin and parity of a single produced resonance at the LHC,

T. Agatonovic Jovin ILD Software and Analysis Group February 3, 2021 arXiv:1208.4018 [hep-ph] for Higgs to ZZ\* and WW\* decays

# Preselection exercise

- ZZ-fusion at 1.4 TeV@ 1  $ab^{-1}$
- WHIZARD v1.95, including ISR and BS and luminosity spectrum
- ILCSoft 2017-12-21
- t-channel process, electrons are scattered forward
   not full statistics in the tracker at >1 TeV energies,
   yet 8-9.10<sup>3</sup> events in 1 ab<sup>-1</sup> with both e+ and e- in the tracker
- At 500 GeV (due to  $\sigma$ ,  $\mathcal{L}$ , N<sub>tr</sub>) available number of events is ~3 times smaller than (a) 1 TeV
- Isolated e<sup>-</sup>/e<sup>+</sup> identification
  - Track energy: *E*<sub>track</sub> > 100 GeV
  - Impact parameter: *d*<sub>o</sub> < 0.04, *z*<sub>o</sub> < 0.1, *r*<sub>o</sub> < 0.1
  - Ratio of deposition: *R*<sub>cal</sub> > 0.94
  - Cone energy: optimized with isolation curve







#### Polar angle distribution







#### E<sub>track</sub> > 100 GeV



#### <mark>d</mark>₀ < 0.04 mm



#### <mark>Z<sub>0</sub> < 0.1 mm</mark>



#### **r**<sub>0</sub> < 0.1 mm



#### $R_{cal} > 0.94$



#### 1 ab<sup>-1</sup> at 1.4 TeV



### Preselection exercise cont.

•  $E_{\text{cone}}^2 < 30 E_{\text{track}}^2 + 0.01 \text{ GeV} E_{\text{track}} + 0.01 \text{ GeV}^2$ 





| @1.4 TeV<br>@1 ab⁻¹                      | Input               | <b>E</b> <sub>track</sub>         | E <sub>track</sub> && d <sub>o</sub> /z <sub>o</sub> /r <sub>o</sub> | E <sub>track</sub> && d <sub>o</sub> /z <sub>o</sub> /r <sub>o</sub><br>&& R <sub>CAL</sub> | $E_{\text{track}} \&\& d_o / z_o / r_o \&\& R_{CAL} \\ \&\& E_{\text{cone}} = f(E_{\text{track}})$ |
|------------------------------------------|---------------------|-----------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Number of<br>ee events in<br>the tracker | <b>N</b> ev = 7,060 | N <sub>ev</sub> = 6,940<br>(1.7%) | N <sub>ev</sub> = 6,714<br>(4.9%)                                    | N <sub>ev</sub> = 6,670<br>(5.52%)                                                          | N <sub>ev</sub> = 5,807<br>(17.7%, <i>Eff</i> ~82%)                                                |



T. Agatonovic Jovin ILD Software and Analysis Group February 3, 2021

### Production request



| Processes @ 1 TeV, 1 ab-1 ILC                                | Cross                  | N @ 1 ab-1            | Production request |
|--------------------------------------------------------------|------------------------|-----------------------|--------------------|
|                                                              | [di] noitoez           |                       |                    |
| Signal                                                       |                        |                       |                    |
| $e^+e^- \rightarrow He^+e^-, H \rightarrow X (2 e + 2 jets)$ | 21                     | 21 x 10 <sup>3</sup>  | 100 000            |
| Background                                                   |                        |                       |                    |
| 1) $e^+e^- \rightarrow q\bar{q}l^+l^-$                       | 2.6 x 10 <sup>3</sup>  | 2.6 x 10 <sup>6</sup> | 10 <sup>6</sup>    |
|                                                              |                        |                       |                    |
| 2) $e^+e^- \rightarrow q\bar{q}\nu\nu$                       | 300-400                | 300 x 10 <sup>3</sup> | NOT RELEVANT       |
|                                                              |                        |                       |                    |
| 3) $e^+e^- \rightarrow q\bar{q}l\nu$                         | $\sim 5 \times 10^{3}$ | 5 x 10 <sup>6</sup>   | 10 <sup>6</sup>    |
|                                                              |                        |                       |                    |
| 4) $\gamma \gamma \rightarrow e^+ e^- q \bar{q}$             | $\sim 10^4$            | 107                   | $\sim 10^{6}$      |
|                                                              |                        |                       |                    |



### Conclusion



- Possibility that CP is violated in the Higgs sector raises several intriguing questions (here we quote D. Jeans in our contribution for Snowmass https://www.snowmass21.org/docs/files/summaries/EF/SNOWMASS21-EF1\_EF2\_DanielJeans-113.pdf):
  - What is a precision at the different colliders & energies ?
  - What are critical or advantageous detector aspects? (e.g. quark charge identification)
  - How do these measurements all fit together ?
  - What is their relative importance ?
- We have successfully reconstructed  $\phi$  distributions for both Higgs production (ZZ-fusion) and decays (ZZ<sup>\*</sup>, WW<sup>\*</sup>)
- Method of the analysis is proposed
- Possible preselection for  $e^-e^+ \rightarrow e^-e^+H$  is developed
- Now we need ILC@1 TeV samples of signal and background





### BACKUP





