# $\mathbf{e}^{+} \mathbf{e}^{-->}$gamma Z <br> Physics analysis 

Takahiro Mizuno
2021. 2. 10.

## Introduction (1)

Primary Target of ILC 250 : to precisely measure the coupling constants between Higgs boson and various other particles

## SMEFT

- Model-independent BSM analysis
- $\mathrm{SU}(2) \times \mathrm{U}(1)$ gauge invariant
- Need to measure various processes including the process without Higgs

Asymmetry in left- and right-handed eeZ coupling is very powerful to improve the constraints on SMEFT operators

## Introduction (2)

## eeZ coupling contains BSM effect

- Contact interaction
- AZ mixing



## Introduction (3)

Contribution to the deviation in the eeZ couplings is different in each polarization

$$
\begin{aligned}
& g_{L}=\frac{g}{c_{w}}\left[\left(-\frac{1}{2}+s_{w}^{2}\right)\left(1+\frac{1}{2} \delta Z_{Z}\right)-\frac{1}{2}\left(c_{H L}+c_{H L}^{\prime}\right)-s_{w} c_{w} \delta Z_{A Z}\right] \\
& g_{R}=\frac{g}{c_{w}}\left[\left(+s_{w}^{2}\right)\left(1+\frac{1}{2} \delta Z_{Z}\right)-\frac{1}{2} c_{H E}-s_{w} c_{w} \delta Z_{A Z}\right] \\
& \delta Z_{A Z}=s_{w} c_{w}\left(\left(8 c_{W W}\right)-\left(1-\frac{s_{w}^{2}}{c_{w}^{2}}\right)\left(8 c_{W B}\right)-\frac{s_{w}^{2}}{c_{w}^{2}}\left(8 c_{B B}\right)\right)
\end{aligned}
$$

## Introduction (4)

Left-right asymmetry in the cross section
$A_{\text {LR }}$
$\mathrm{A}_{\mathrm{LR}}=\mathrm{A}_{\mathrm{e}}$
$\mathcal{A}_{\mathrm{f}}=\frac{g_{\mathrm{Lf}}^{2}-g_{\mathrm{Rf}}^{2}}{g_{\mathrm{Lf}}^{2}+g_{\mathrm{Rf}}^{2}}=\frac{2 g_{\mathrm{Vf}} g_{\mathrm{Af}}}{g_{\mathrm{Vf}}^{2}+g_{\mathrm{Af}}^{2}}=2 \frac{g_{\mathrm{Vf}} / g_{\mathrm{Af}}}{1+\left(g_{\mathrm{Vf}} / g_{\mathrm{Af}}\right)^{2}} \begin{aligned} & \mathbf{g}_{\mathbf{A}}=\mathbf{g}_{\mathrm{L}}+\mathbf{g}_{\mathrm{R}} \\ & \mathbf{g}_{\mathbf{v}}=\mathbf{g}_{\mathrm{L}}+\mathbf{g}_{\mathrm{R}}\end{aligned}$
Depend only on the ratio of the couplings

By measuring $\mathrm{A}_{\mathrm{LR}}$, we can constraint SMEFT operators $\mathrm{c}_{\mathrm{HL}}$, c'HL, che, cWW, cWb and cbB.

## Introduction (5)

## Current best measurement

$\mathrm{A}_{\mathrm{LR}}=0.1514 \pm 0.0019$ (statistic error)
$\pm 0.0011$ (systematic error)

LEP: 17 million Z decays (ALEPH + DELPHI + L3+ OPAL, LEP-I, 1989-1995)
SLC: 600 thousand $Z$ decays (SLD, 1992-1998, polarization of $\mathrm{e}^{-}$)

ILC250: 90 million radiative return events

Final goal is to access how much we can improve these systematic errors.

## Analysis method



If we ignore the jet mass,
Initial(s):
(E,0,0,-E)
(E,0,0,E)

Jet system(s'): (E,0,0,-E) ((1-x)E,0,0,(1-x)E)

$$
\begin{aligned}
& s^{\prime} \sim(1-x) s \\
& \beta=x /(2-x) \quad \text { i.e. } x=2 \beta /(1+\beta) \\
& m z^{2}=s^{\prime}=s(1-\beta) /(1+\beta)
\end{aligned}
$$

$$
\beta=\frac{\left|\sin \left(\theta_{1}+\theta_{2}\right)\right|}{\sin \theta_{1}+\sin \theta_{2}}
$$

$\theta_{\mathrm{i}}$ : Polar angle of jet i

## Analysis method



If we ignore the jet mass,

## Inti Reconstruct my from the polar angle of jets

Jet system (s'): $\xrightarrow{(E, 0,0,-E)} \xrightarrow{((1-x) E, 0,0,(1-x) E)}$

$$
\begin{aligned}
& s^{\prime} \sim(1-x) s \\
& \beta=x /(2-x) \quad \text { i.e. } x=2 \beta /(1+\beta) \\
& m z^{2}=s^{\prime}=s(1-\beta) /(1+\beta)
\end{aligned}
$$

$$
\beta=\frac{\left|\sin \left(\theta_{1}+\theta_{2}\right)\right|}{\sin \theta_{1}+\sin \theta_{2}}
$$

$\theta_{\mathrm{i}}$ : Polar angle of jet i

## Simulation setup

- Geant4-based full detector simulation is performed for the $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ $\gamma \mathrm{Z}, \mathrm{Z} \rightarrow 2$ Jets process using a realistic ILD detector model, at $\mathbf{E}_{\mathbf{C M}}=$ 250 GeV with $\int \mathrm{Ldt}=900 \mathrm{fb}^{-1}$ each for 2 beam polarizations: $\left(\mathrm{P}_{\mathrm{e}}-, \mathrm{P}_{\mathrm{e}}+\right)=$ $(-0.8,+0.3)$ and ( $+0.8,-0.3$ ).

Simulation setup is not well settled yet.

Trying to analyze

- DBD 250 GeV samples
- New samples

Looking at background (e.g. 4f_singleW_semileptonic)

## Temporary result

DBD 250 GeV signal samples (ee->Z $\gamma, \mathrm{Z}->2 \mathrm{jets})$

Reconstructed from MC


Reconstructed from PFO


Peak in the PFO reconstructed MZ is much below 91.2 GeV .
Need to improve the method.

## Temporary result

DBD 250 GeV signal samples (ee->Z $\gamma, \mathrm{Z}->2 \mathrm{jets}$ )
Reconstructed from MC
Reconstructed from PFO


Peak in the PFO reconstructed MZ is much below 91.2 GeV .
Need to improve the method.

## Temporary result

Background samples (ee->Wev, W->2jets)
Reconstructed from PFO


Normalize and consider how to cut the background events.

## Conclusion/ Future work

- Full simulation study for the $\mathrm{A}_{\text {LR }}$ measurement using $\mathrm{e}^{+} \mathrm{e}^{-}$ $\rightarrow \gamma \mathrm{Z}$ process is started.
- $\mathrm{Mz}_{\mathrm{z}}$ can be reconstructed using the polar angle of 2 jets in the MC level inputs.
- Shift to the simulation using the new sample.
- Look at the background events. Normalize the distribution and consider how to cut out those events.

