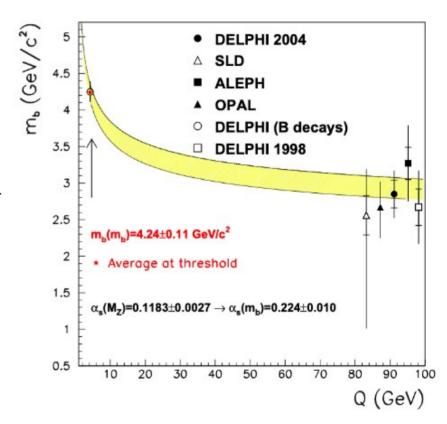
# B-quark mass determination from three jet rates at the ILC

J. Fuster, A. Irles, G. Rodrigo, S. Tairafune, M. Vos, H. Yamamoto, R. Yonamine

ILD Software & Analysis, 10th February 2021



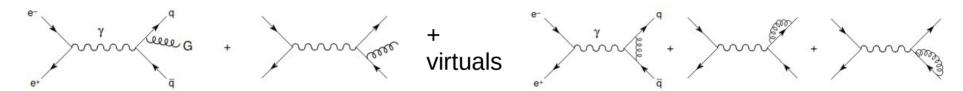





# A running mass



- Quarks are confined in colorless hadrons → not seen as free particles.
- ► Therefore, quark masses are not observables: are running parameters
  - Similarly as the coupling constants (alpha\_s)
  - The mass is only defined within a given renormalization scheme (and calculation order)
- ► The quark masses are inferred from hadronic observables and their theoretical predictions
  - Inclusive cross sections
  - Three jet rates
- ► The running quark mass has been very precisely measured in the past
- **▶** Measurements at different scales in the MSbar scheme
  - More limited precision at higher energies










- ▶ LEP/SLD manage to determine the mass at the Z-pole with the highest precision studying jet observables
  - 3/4 jet rates [Rodrigo, Santamaria, Bilenky] [Bernreuther, Brandenburg, P. Uwer], [Nason, Oleari]



- QCD radiation in the final state creates divergences (soft/collinear)
  - We need a jet-definition: an algorithm to decide how to avoid Infrared divergences
  - JADE / DURHAM / CAMBRIDGE jet algorithms
- ► The ggbar+jet cross section definition depends on the jet algorithm

$$R_3^{flav} = \frac{\Gamma_{flav}^{3jet}(y_{cut})}{\Gamma flav}$$
, JADE/DURHAM/CAMBRIDGE ycut= resolution parameter

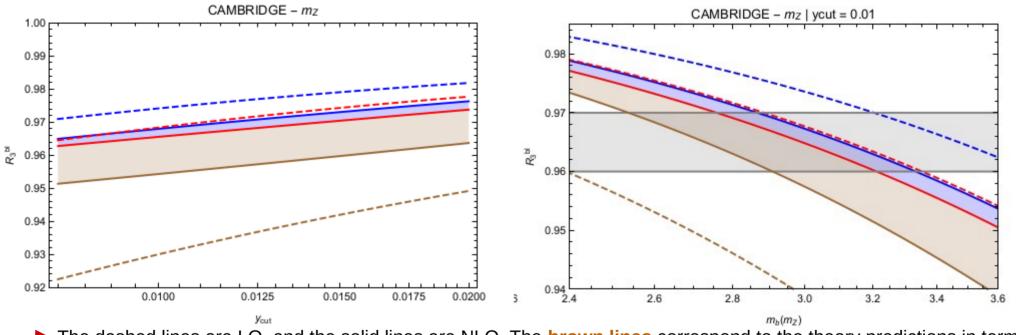




The observable:

$$R_3^{b\ell} = \frac{\Gamma_{3j}^b(y_c)/\Gamma^b}{\Gamma_{3j}^\ell(y_c)/\Gamma^\ell}$$

- ► l= uds
- ► The double ratio
  - Cancel most of the EW corrections and large logarithms of the bmass
  - Reduces of the common systematic uncertainties (hadronization effects)
  - ratio allows to cancel large logarithms of the b-mass


► At NLO QCD

$$\begin{split} R_3^{b\ell} &= 1 + \frac{\alpha_S(\mu)}{\pi} a_0(y_{cut}) + \overline{r}_b(\mu) \left( b_0(\overline{r}_b, y_{cut}) + \frac{\alpha_S(\mu)}{\pi} \overline{b}_1(\overline{r}_b, y_{cut}, \mu) \right) \;, \\ \text{where } \overline{r}_b(\mu) &= m_b^2(\mu)/s \text{ and } \overline{b}_1(\overline{r}_b, y_{cut}, \mu) = b_1(\overline{r}_b, y_{cut}) + 2b_0(\overline{r}_b, y_{cut})(4/3 - \log \overline{r}_b + \log(\mu^2/s)). \end{split}$$

• Using the Msbar instead of the pole mass scheme improves the convergence of the perturbative predictions



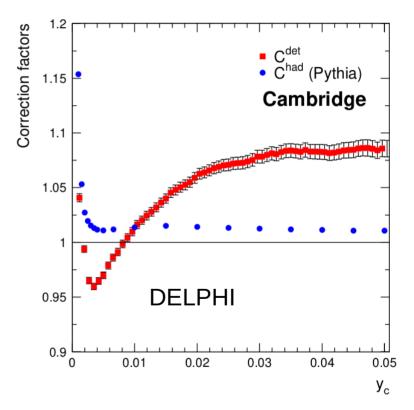




- The dashed lines are LO, and the solid lines are NLO. The **brown lines** correspond to the theory predictions in terms of the **pole mass** and  $\mu$  = cme. The **blue** and **red** lines represent the theory predictions with the **running mass** and renormalization scales at  $\mu$  = 2 cme and  $\mu$  = cme/2, respectively. The theory uncertainty is estimated from the spread of the results, and is given by the shadowed band at NLO.
- ▶ The horizontal band represents an Ansatz for the experimental measurement.



# **Snapshot of the DELPHI measurement**






$$m_b(M_Z) = 2.85 \pm 0.18 \text{ (stat)} \pm 0.13 \text{ (exp)} \pm 0.19 \text{ (had)} \pm 0.12 \text{ (theo)} \text{ GeV}/c^2$$

- ➤ Statistical uncertainty: associated to the luminosity and selection efficiency (flavour tagging)
- ► Experimental uncertainties: detector effects, flavour tagging efficiency/purity
- ► Hadronization uncertainties: modeling of the parton shower + hadronization (including mass effects on the hadronization)
  - Includes a  $O(\lambda_{\text{QCD}})$ ~150 MeV uncertainty related to the intrinsic Msbar pole conversion and renormalons

$$R_3^{bl}(parton) = C^{had} C^{det} R_3^{bl}(reco)$$

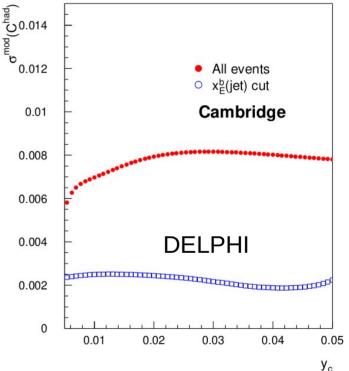


hep-ex/0603046



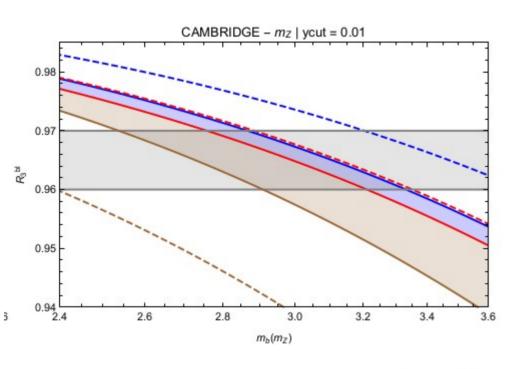
# **Snapshot of the DELPHI measurement**

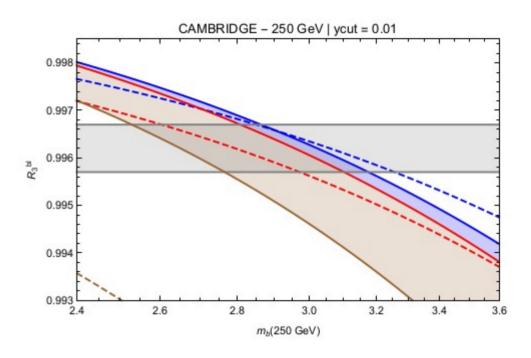





$$R_3^{bl}(parton) = C^{had} C^{det} R_3^{bl}(reco)$$

- ► C<sup>had</sup> → corrects from parton level to hadron level
  - Hadronization uncertainty was negligible as soon as a minimal energy of the B-hadron is required (xbE)
  - LEP: 0.2% on Chad → comparing different Had. Algorithms and tunes
- C<sup>det</sup> → corrects from reco level to parton level
  - Main uncertainties coming from flavour selection efficiency, detector acceptance, etc
  - Flavour tagging efficiency and purity


|             | <i>b</i> -quark |          | light o  | quarks   |
|-------------|-----------------|----------|----------|----------|
| Experiment  | Eff. [%]        | Pur. [%] | Eff. [%] | Pur. [%] |
| DELPHI [19] | 47%             | 86%      | 51%      | 82%      |


- The efficiency defines our statistical uncertainty
- The purity limited the accuracy on the efficiency determination



# ILC prospects: Z-Pole vs 250GeV







Sensitivity of the observable

$$\Delta R_3^{b\ell} \sim \frac{2(1-R_3^{b\ell})}{m_b(\mu)} \Delta m_b(\mu) \ .$$

The sensitivity at 250GeV is ~5 times worst



## ILC prospects: Z-Pole vs 250GeV



Signal (250GeV)



- ► ILC can operate at the Z-pole
  - GigaZ with ~x100 more Z→ bbar than LEP
- ► ILC will operate at 250 GeV
  - 2000fb-1 with shared luminosity of two polarization scenarios
  - ~3M of bbar pairs
  - Limited sensitivity...
  - Contamination from radiative return backgrounds and diboson backgrounds
  - Very challenging measurement

| Polarization | $\sigma_{e^-e^+ 	o q\overline{q}}(E_{\gamma} < 50  GeV)$ [fb] |                 |                           |
|--------------|---------------------------------------------------------------|-----------------|---------------------------|
|              | $b\overline{b}$                                               | $c\overline{c}$ | $q\overline{q} (q = uds)$ |
| $e_L^-e_R^+$ | 5970.9                                                        | 8935.2          | 19347.6                   |
| $e_R^-e_L^+$ | 1352.1                                                        | 3735.1          | 5920.4                    |

| Channel                                                            | $\sigma_{e_L^-e_R^+ 	o X}$ [fb] | $\sigma_{e_R^-e_L^+ 	o X}$ [fb] |
|--------------------------------------------------------------------|---------------------------------|---------------------------------|
| $X = Z\gamma \rightarrow \gamma q\overline{q}(E_{\gamma} > 50GeV)$ | 94895.3                         | 60265.3                         |
| $X = WW  ightarrow q_1 \bar{q_2} q_3 \bar{q_4}$                    | 14874.4                         | 136.4                           |
| $X=ZZ  ightarrow q_1 ar{q_1} q_2 ar{q_2}$                          | 1402.1                          | 605.0                           |
| $X=HZ ightarrow q_1ar{q_1}q_2ar{q_2}$                              | 346.0                           | 222.0                           |

bkg (250GeV)



# **ILC250** prospects



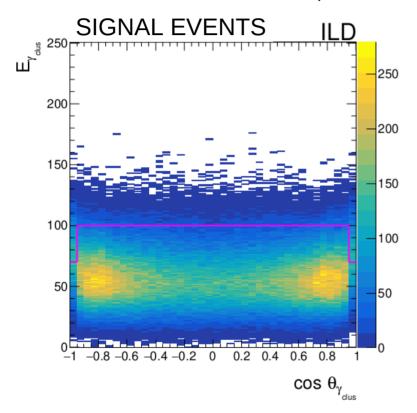


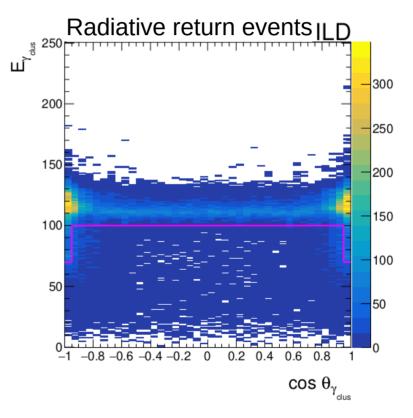
- ▶ We study the experimental viability of the R3bl at ILC250 and ILC-GigaZ
  - We only have samples for the 250GeV
- ► We used old samples DBD (the 2020 samples were still not validated)
- ightharpoonup e+e- ightharpoonup qq at LO and for massless quarks (including the b-quark)
  - The mass effects are wrongly implemented: only appear during the PS and Hadronization process
  - Including higher QCD orders and mass effects is an ongoing activity of the Whizard experts in contact with our team.
- ▶ With these samples we cannot get a reliable R3bl prediction
  - But we can estimate the efficiency of selection and flavour tagging
  - And the optimization of the background rejection








- ▶ We follow the same recipe & techniques than for the AFBb studies (Bilokin, Poeschl, Richard, A.I)
- ➤ Start with a preselection of quarks in the final state.
- ▶ We force our events to be reconstructed as 2 jets
  - ee\_gen\_kt, R=1.25
- Cut 1: removal of radiative return events with "undetected" photon
  - Cut in the invariant mass of the system (mjj>130GeV)+ cut in the energy of the lost ISR photon (Kreco<50GeV)


$$|\vec{k}| \approx K_{reco} = \frac{250 \,\text{GeV} \cdot \sin \Psi_{acol}}{\sin \Psi_{acol} + \sin \theta_1 + \sin \theta_2}.$$



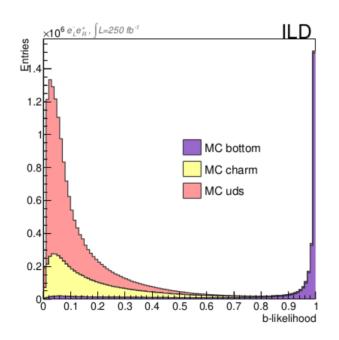


► Cut 2: veto of events in which the ISR photon was reconstructed and identified inside the detector

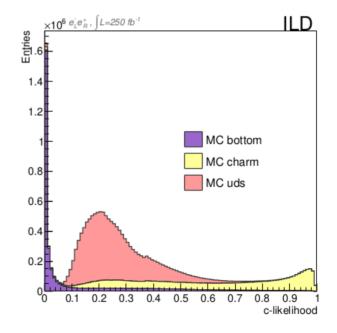










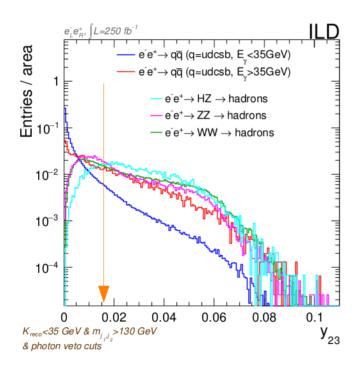


▶ Cut 3: flavour tagging (double tagging)

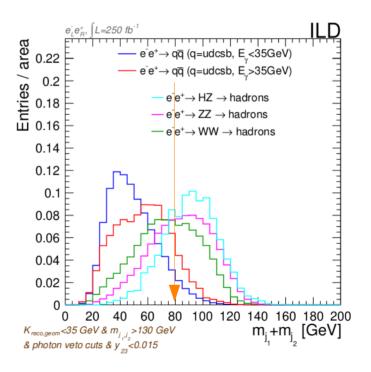
b-quark selection: btag>0.85

I-quark selection: btag<0.4 & ctag<0.25</li>



|                 | <i>b</i> -quark |          | light quarks |          |
|-----------------|-----------------|----------|--------------|----------|
| Experiment      | Eff. [%]        | Pur. [%] | Eff. [%]     | Pur. [%] |
| DELPHI [19]     | 47%             | 86%      | 51%          | 82%      |
| ILD (this note) | 80%             | 98.7%    | 58%          | 96.1%    |



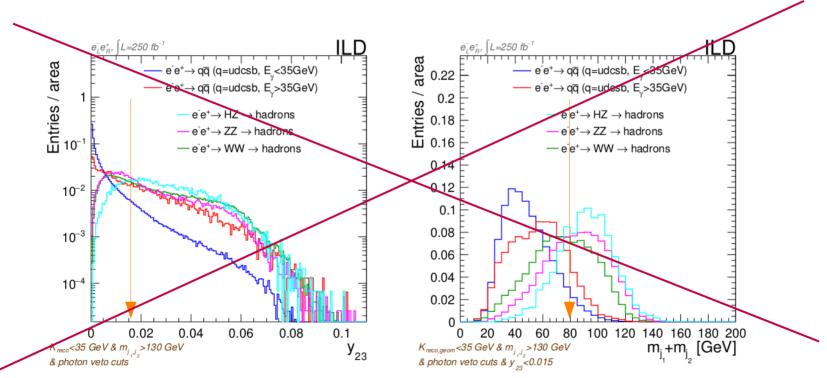








- ▶ Is this enough? For the AFBb analysis we add another set of aggressive cuts on jet variables (y23, mass of the jets) to remove the remaining backgrounds.
- ▶ Undesirable here since y23 and mass of the jets are tightly connected to the R3bl observable



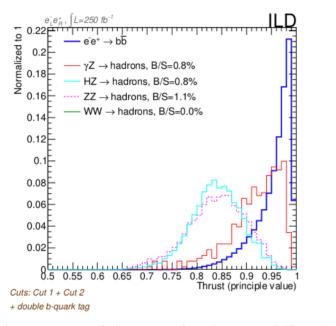


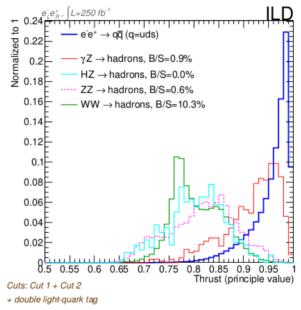







- ▶ Is this enough? For the AFBb analysis we add another set of aggressive cuts on jet variables (y23, mass of the jets) to remove the remaining backgrounds.
- ▶ Undesirable here since y23 and mass of the jets are tightly connected to the R3bl observable



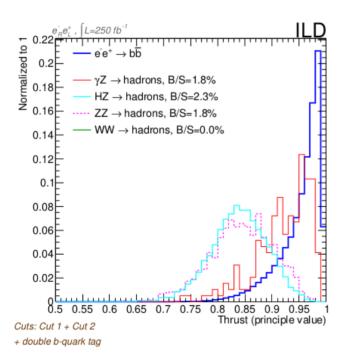



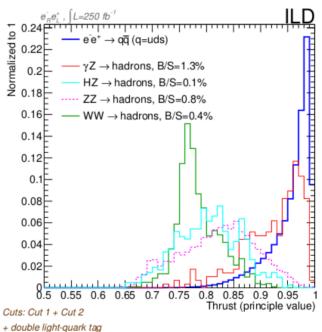





- Let's take a look at the Thrust (principle axis)
- Left polarization case: the WW bkg adds a large contribution to the light quark selection







- ▶ We can remove large part of the WW background if T>0.8
  - Which seems a harmless cut





- Let's take a look at the Thrust (principle axis)
- ► Right polarization case:
  - Smaller bkg contribution



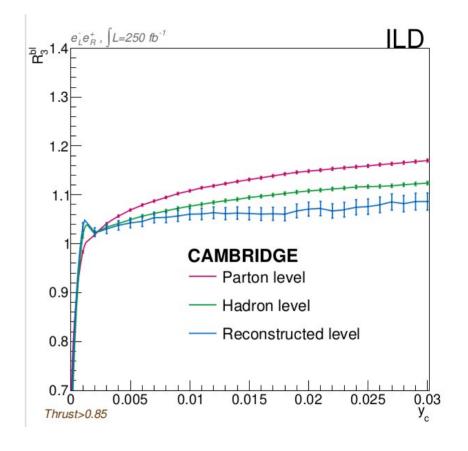








|            |                | $e_L^-e_R^+$ |        |      |       |
|------------|----------------|--------------|--------|------|-------|
|            |                |              | B/S [% | ]    |       |
|            | Signal Eff [%] | Rad. Return  | WW     | ZZ   | HZ    |
| T>0        | 0.8            |              |        |      |       |
| $R_3^\ell$ | 16.5%          | 1.4%         | 5.1%   | 0.3% | 0.0 % |
| $R_3^b$    | 37.8%          | 1.2%         | 0.0%   | 0.6% | 0.6 % |
| T>0        | 0.85           |              |        |      |       |
| $R_3^\ell$ | 16.2%          | 1.3%         | 2.3%   | 0.2% | 0.0 % |
| $R_3^b$    | 36.9%          | 1.2%         | 0.0%   | 0.3% | 0.3 % |
|            |                | •            |        |      |       |
|            |                |              |        |      |       |
|            |                | $e_R^-e_L^+$ |        |      |       |
|            | B/S [%]        |              |        |      |       |
|            | Signal Eff [%] | Rad. Return  | WW     | ZZ   | HZ    |
| T>0        | 0.8            |              |        |      |       |
| $R_3^\ell$ | 16.7%          | 1.5%         | 0.1%   | 0.5% | 0.0   |
| $R_3^b$    | 37.3%          | 1.9%         | 0.0%   | 1.4% | 1.8   |
| T>0        | 0.85           |              |        |      |       |
| $R_3^\ell$ | 16.4%          | 1.4%         | 0.0%   | 0.3% | 0.0   |
| $R_3^b$    | 36.5%          | 1.8%         | 0.0%   | 0.9% | 1.0   |
|            |                |              |        |      |       |




#### **ILC250: final selection**



We construct the R3q observables by reclustering all available PFOs using the CAMBRIDGE algorithm with ycut=0.01

- ▶ The mass effects are not implemented in the current MC
- ▶ But we can estimate the difference between steps:
  - Hadron Level / Parton shower = Chad
  - Reco Level After Selection / Hadron Level = Cdet





#### **ILC250: final selection**





- ► R3q ~ 0.3 Rq
  - With the estimated efficiencies
  - and for 2000fb-1 H20 scenario we calculate

$$\Delta m_b(-+) = \pm 0.85(stat.)$$
  
 $\Delta m_b(+-) = \pm 1.53(stat.)$ 

GeV

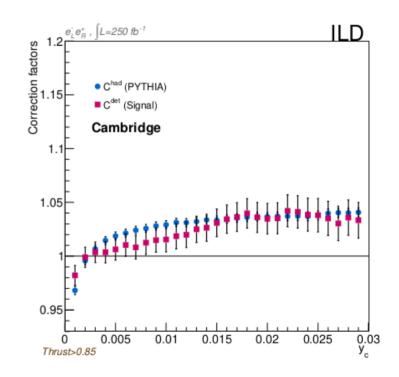
GeV



#### **ILC 250 Estimation of uncertainties: Chad**






$$R_3^{b\ell}\Big|_{parton} = C_{had} \times C_{det} \times R_3^{b\ell}\Big|_{reco}$$

#### **DELPHI PAPER**

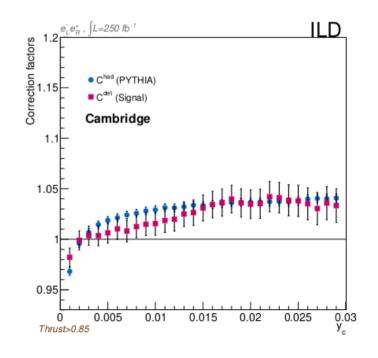
- ► C<sup>had</sup> → corrects from parton level to hadron level
  - Hadronization uncertainty was negligible as soon as a minimal energy of the B-hadron is required (xbE)
  - LEP: 0.2% on Chad → comparing different Had. Algorithms and tunes

#### ILD 250GeV

- ► Not different PS/Fragmentation alogrithms compared (only pythia)
- Higher energy of b-hadrons and more data...
- ▶ We assume that we could improve the uncertainty by a factor two.



#### **ILC 250 Estimation of uncertainties: Cdet**






$$R_3^{b\ell}\Big|_{parton} = C_{had} \times C_{det} \times R_3^{b\ell}\Big|_{reco}$$

$$R_{3}^{q}(y_{cut})\big|_{reco} = \frac{\varepsilon_{sel} \cdot \left[\varepsilon_{q}^{2} \sigma_{q\bar{q}}^{3jet}(y_{cut}) + \varepsilon_{q'}^{2} \sigma_{q'\bar{q}}^{3jet}(y_{cut})\right] + \varepsilon_{bkg} \sigma_{bkg}^{3jet}(y_{cut})}{\varepsilon_{sel} \cdot \left[\varepsilon_{q}^{2} \sigma_{q\bar{q}} + \varepsilon_{q'}^{2} \sigma_{q'\bar{q}}\right] + \varepsilon_{bkg} \sigma_{bkg}}$$

- We have estimations for all values in the right-side formula
- ► The Flavour tagging efficiency can be measured at following Double tagging methods
  - 0.1-0.5% level (as in the AFBb analysis)
- ➤ The BKGs can be reduced to small contributions, however the uncertainty of such contributions is unknow
  - We assume O(1%) uncertainty on epsilon\_bkg x sigma\_bkg



### **ILC 250 Estimation of uncertainties**





| C. Systematic II.                               |                         |                                                     |  |
|-------------------------------------------------|-------------------------|-----------------------------------------------------|--|
| C <sub>had</sub> Systematic Unc.                |                         |                                                     |  |
| Source                                          | Estimation              | comments                                            |  |
| hadronization                                   | 0.1 %                   | Assumed to be half the uncertainty                  |  |
| modelling                                       | 0.1 //                  | evaluated for LEP                                   |  |
| $C_{det}$ Systematic Unc. $(e_L e_R^{\dagger})$ |                         |                                                     |  |
| <b>a</b>                                        | 0.07 %                  | assuming flavour tagging uncertainties              |  |
| flavour tagging                                 |                         | as estimated in [36]                                |  |
| pre-selection efficiency                        | 0.06 %                  | as estimated in [36]                                |  |
|                                                 |                         | assuming modelling uncertainties at                 |  |
|                                                 |                         | the per cent level. It assumes a                    |  |
| Zγ/WW/HZ/ZZ<br>modelling                        | 0.20 %                  | moderate cut in the thrust of the event             |  |
|                                                 | 0.20 %                  | which may required further studies to               |  |
|                                                 |                         | reject possible biases on the                       |  |
|                                                 |                         | observable due to this cut.                         |  |
| total                                           | 0.22 %                  | dominated by the $WW$ contamination to $R_3^{\ell}$ |  |
|                                                 | C <sub>det</sub> System | natic Unc. $(e_R^- e_L^+)$                          |  |
| flavour togging                                 | 0.06 %                  | assuming flavour tagging uncertainties              |  |
| flavour tagging                                 |                         | as estimated in [36]                                |  |
| pre-selection efficiency                        | 0.06 %                  | as estimated in [36]                                |  |
|                                                 | 0.4.5                   | Assuming modelling uncertainties at                 |  |
| $Z\gamma/WW/HZ/ZZ$ modelling                    |                         | the per cent level. No specific cuts are            |  |
|                                                 | 0.1 %                   | needed for the removal of the                       |  |
| C                                               |                         | backgrounds.                                        |  |
| 4-4-1                                           | 0.12.0                  | dominated by the ZZ and radiative                   |  |
| total                                           | 0.13 %                  | return contamination to $R_3^b$                     |  |
|                                                 |                         |                                                     |  |



#### **ILC 250 Estimation of uncertainties**



$$\Delta R_3^{b\ell} \sim rac{2(1-R_3^{b\ell})}{m_b(\mu)} \, \Delta m_b(\mu) \; .$$

$$\Delta m_b(-+) = \pm 0.85(stat.) \pm 0.34(had.) \pm 0.75(exp.) \pm 0.07(th.)$$
 GeV  $\Delta m_b(+-) = \pm 1.53(stat.) \pm 0.34(had.) \pm 0.44(exp.) \pm 0.07(th.)$  GeV



# **ILC GigaZ Estimation of uncertainties**

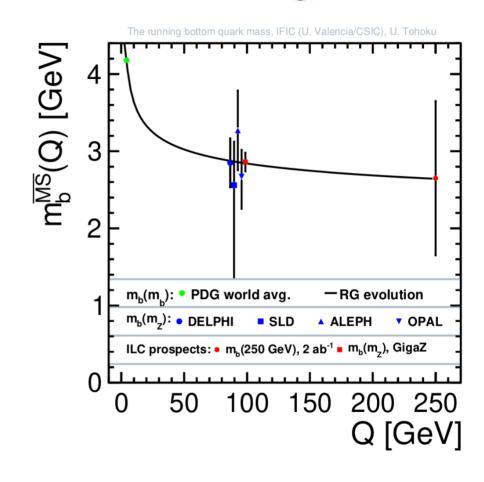




$$\Delta R_3^{b\ell} \sim \frac{2(1-R_3^{b\ell})}{m_b(\mu)} \, \Delta m_b(\mu) \; .$$

$$\Delta m_b(m_Z) = 0.12 = 0.02(stat.) \pm 0.09(had.) \pm 0.02(exp.) \pm 0.06(th.)$$
 GeV

- ▶ We recover large the large sensitivity
- We no longer have the problem of radiative return and diboson backgrounds
- ▶ ILD superior flavour tagging will reduce the experimental uncertainties
- Assumed same efficiencies at 250 GeV and GigaZ
  - Make negligible the experimental uncertainties in a first approximation
- ► Hadronization still dominates → even assuming that we will be twice smarter than LEP (with 100 times more data)




# **ILC Prospects**





- ➤ The ILC250 measurement is very challenging and show limited sensitivity
  - However it will add an extra point at never probed energies
- ➤ A measurement at GigaZ would allow to test the hypothesis of SM running of the mass at ~5 sigmas





# **Summary & plans**





- Seidai Taraifune just defended his Master these based on this work
- We are sending an abstract to LCWS
  - Presenter Seidai
- ▶ We plan to make this work public through an ILD public note
  - Contacting the PSB just after this talk
- This work has triggered the discussion with Whizard experts
  - Towards NLO QCD samples
  - With non massless quarks











| experiment | $m_b(m_Z)$ [GeV ]                                                                               |
|------------|-------------------------------------------------------------------------------------------------|
| DELPHI     | $2.67 \pm 0.25  ({ m stat.}) \pm 0.34  ({ m frag.}) \pm 0.27  ({ m th.})$                       |
| SLD        | $2.56 \pm 0.27 \text{ (stat.)} ^{+0.28}_{-0.38} \text{ (syst.)} ^{+0.49}_{-1.48} \text{ (th.)}$ |
| ALEPH      | $3.27 \pm 0.22  ({ m stat.}) \pm 0.22  ({ m exp.}) \pm 0.38  ({ m had.}) \pm 0.16  ({ m th.})$  |
| OPAL       | $2.67 \pm 0.03 \text{ (stat.)} ^{+0.29}_{-0.37} \text{ (syst.)} \pm 0.19 \text{ (th.)}$         |
| DELPHI     | $2.85 \pm 0.18  ({ m stat.}) \pm 0.13  ({ m exp.}) \pm 0.19  ({ m had.}) \pm 0.12  ({ m th.})$  |
| DELPHI     | $3.76 \pm 0.32  ({ m stat.}) \pm 0.17  ({ m syst.}) \pm 0.22  ({ m had.}) \pm 0.90  ({ m th.})$ |

Table 1: Measurements of the bottom-quark  $\overline{MS}$  mass at the scale  $\mu = m_Z$ , from three and four-jet rates with bottom quarks in  $e^+e^-$  collisions at the Z-pole at LEP and SLD.

