$H{\rightarrow}\text{invisible}$ at the ILC with SiD

Amanda Steinhebel Jan Strube, Chris Potter, Jim Brau

University of Oregon

3 March 2021

Abstract

While the Standard Model (SM) predicts a branching ratio of the Higgs boson decaying to invisible particles of O(0.001), the current measurement of the Higgs boson coupling to other SM particles allows for up to 30% of the Higgs boson width to originate from decays beyond the SM (BSM). The small SM-allowed rate of Higgs boson decays to invisible particles can be enhanced if the Higgs boson decays into new particles such as dark matter. Upper limits have been placed on $\mathcal{B}_{H \rightarrow inv}$ by ATLAS and CMS at O(0.1), but the hadron environment limits precision. The ILC 'Higgs factory' will provide unprecedented precision of this electroweak measurement. Studies of the search for $H \rightarrow$ invisible processes in simulation are presented with SiD, a detector concept designed for the ILC. Preliminary results for expected sensitivity are provided, as well as studies considering potential systematics limitations.

Physics Motivation

- SM $H
 ightarrow ZZ^*
 ightarrow
 u
 u
 u
 u$, $\mathcal{B}_{H
 ightarrow inv.} \sim 0.1\%$
- Higgs potal DM DM candidate couples directly to Higgs, would leave invisible detector signature
- Additional couplings of DM to Higgs $(m_{DM} < m_H/2)$ could increase BR by $\mathcal{O}(10)\%$
- \bullet Directly probes of H ${\rightarrow} inv.$ process

- ILC is ideal for this precision EWK measurement:
- Hadronic interacts/pileup leave large uncertainties on MET from decay
- Systematics-limited analyses don't benefit much from increased stats
- Detectors designed for particle flow reduce jet measurement uncertaintites

 $H \rightarrow invisible$ with SiD

Current $\mathcal{B}_{H \rightarrow inv.}$ Results

LHC

- CMS Run 1 and partial Run 2 [1809.05937]
 - $\mathcal{B}_{H \rightarrow \mathrm{inv.}} < 19\%(15\%) \text{ obs(exp)}$
- ATLAS Run 1 and two Run 2 full analyses [ATLAS-CONF-2020-052]

•
$$\mathcal{B}_{H \to \mathrm{inv.}} < 11\%(11\%) \mathrm{~obs(exp)}$$

ILC

- ILD [2002.12048]
 - Combined Z hadronic and leptonic channels
 - $\mathcal{B}_{H \to \mathrm{inv.}} < 0.23\% (0.65\%)$ for ILC250(500) at 95% C.L.
- SiD LOI
- SiD preliminary work [1] ,[2]

SiD Detector Concept

- Compact and cost-constrained
- Designed for particle-flow paradigm
- Highly granular pixelated Silicon-based tracker and EM Calorimeter, steel RPC Hadron calorimeter
- Compact design with 5T magnetic field

۰

ILC TDR Vol. 4: Detectors

١

Background Processes

•
$$e^+e^-
ightarrow ZZ
ightarrow
u ar{
u} q ar{q}$$

(XS \sim 46.8 fb⁻¹)

•
$$e^+e^-
ightarrow WW
ightarrow \ell
u q ar q$$

(XS \sim 2745 fb $^{-1}$)

• $e^+e^- \rightarrow q\bar{q}, \mu\mu$ $({\rm XS} \sim 47000, 6190 ~{\rm fb}^{-1}$)

Contributions from 2-, 3-, and

4-fermion backgrounds

I H electrons and

A. Steinhebel (U of Oregon)

LCWS 2021 Draft

I want to put a recoil mass plot here, but let's look at these in more detail in a few slides....

Preliminary SiD Study, Z(had)

- Kinematics cuts to define signal region
 - *N_{jet}* == 2
 - $20 < p_T^{vis} < 70 \text{ GeV}$
 - $75 < m_{vis} < 105 \text{ GeV}$
 - $-0.9 < \cos\theta_{jj} < -0.2$
 - 110 < m_{recoil} < 150 GeV

SiD full simulation ILC250 with $\mathcal{B}_{H \to \text{inv.}} = 10\%$, 900 fb⁻¹ for both polarizations (80/30)

Full Simulation									
Requirement (Full)	S(LR)	B(LR)	$\frac{S}{\sqrt{S+B}}$	S(RL)	B(RL)	$\frac{S}{\sqrt{S+B}}$			
$20 \leq p_T^{vis} \leq 70 \ \mathrm{GeV}$	1.25e+04	7.71e+06	4.48	8.84e+03	1.07e+06	8.53			
$75 \leq m_{vis} \leq 105~{ m GeV}$	1.16e+04	1.79e+06	8.63	8.21e+03	3.14e+05	14.5			
$N_{jet} = 2$	1.16e+04	1.79e+06	8.63	8.21e+03	3.14e+05	14.5			
$-0.9 \le \cos \theta_{jj} \le -0.2$	1.08e+04	8.68e+05	11.5	7.65e+03	1.78e+05	17.7			
$110 \le m_{recoil} \le 150$	1.03e+04	3.6e+05	17	7.33e+03	8.39e+04	24.2			

Preliminary SiD Study, Z(lep)

- Similar to Z(had) cuts
- *N*_ℓ == 2 (same flavor, opposite sign)
- $20 < p_T^{vis} < 70 \text{ GeV}$
- $75 < m_{vis} < 105 \text{ GeV}$
- $110 < m_{recoil} < 150 \text{ GeV}$

SiD full simulation ILC250 with $\mathcal{B}_{H \to \text{inv.}} = 10\%$, 900 fb⁻¹ for both polarizations for SiD (80/30)

Cut	S (LR)	B (LR)	Signif.	S (RL)	B (RL)	Signif.
All events	99158.4	1.71504e+08	7.56949	41778	8.5734e+07	4.51092
2 leptons	5390.72	8.57074e+06	1.84078	2392.23	5.45306e+06	1.02421
SFOS leptons	5388.79	8.53414e+06	1.84406	2391.46	5.43225e+06	1.02583
$75 < m_{vis} < 105 \; { m GeV}$	4941.09	3.26039e+06	2.73439	2196	2.09218e+06	1.51741
$20 < p_T^{vis} < 70 { m GeV}$	4622.55	368678	7.56575	2058.05	111210	6.11506
$110 < m_{recoil} < 150 \text{ GeV}$	4556.48	149428	11.6116	2027.9	34743.1	10.5753

Preliminary SiD Study, Z(lep) Cont'd

BR(Hinv)=10%, 900/fb, eLpR 80/30 polarization

SiD Optimizations

Further optimize signal selection, investigate MVA techniques (study)

Understand impact of geometry and strengths of SiD design

• Active work to understand impact of HCal tile size on energy resolution

Systematics Studies

- Work underway to understand which systematic errors may drive degredation of expected limit on B_{H→inv}.
- Jet Energy Resolution plays large role
 - Work in progress to quantify

hopefully put quantified comment about impact on limit

Future Outlook

		S Yield	B Yield	$S/\sqrt{S+B}$	
Z(had)	eLpR	1.03e4	3.6e5	17	
z (nau)	eRpL	7.33e3	8.39e4	24.2	
Z(lon)	eLpR	4556.48	149428	11.6116	
z (iep)	eRpL	2027.9	34743.1	10.5753	
Combined	eLpR	14856.48	509428	20.52	
Combined	eRpL	9357.9	118643.1	26.16	
	Combined	24214.38	628071.1	29.9	

chris, you have a lepton veto in $Z(\mathsf{had})$ and these are orthogonal, right? modulo rounding

- Joint SiD approach investigate potential physics gains from MVA approach; understand limitations of study through systematics studies
- Incomplete but evolving collaborative study
- Inform Snowmass2021

 $H \rightarrow invisible$ with SiD

Backup Slides

SiD

ILD

Z(had) Cutflow for ILC250

Full Simulation									
Requirement (Full)	S(LR)	B(LR)	$\frac{S}{\sqrt{S+B}}$	S(RL)	B(RL)	$\frac{S}{\sqrt{S+B}}$			
$20 \leq p_T^{vis} \leq \textbf{70}~\text{GeV}$	1.25e+04	7.71e+06	4.48	8.84e+03	1.07e+06	8.53			
$75 \le m_{vis} \le 105 \; {\rm GeV}$	1.16e+04	1.79e+06	8.63	8.21e+03	3.14e+05	14.5			
$N_{jet} = 2$	1.16e+04	1.79e+06	8.63	8.21e+03	3.14e+05	14.5			
$-0.9 \le \cos \theta_{jj} \le -0.2$	1.08e+04	8.68e+05	11.5	7.65e+03	1.78e+05	17.7			
$110 \le m_{recoil} \le 150$	1.03e+04	3.6e+05	17	7.33e+03	8.39e+04	24.2			

Table 2: Selection table for $\sqrt{s} = 250$ GeV, $(P_{e^-}, P_{e^+}) = (-0.8, +0.3)$.

Table 3: Selection table for $\sqrt{s} = 250$ GeV, $(P_{e^-}, P_{e^+}) = (+0.8, -0.3)$.

cut condition	signal (efficiency)	all bkg (efficiency)	significance	cut condition	signal (efficiency)	all bkg (efficiency)	significance
No Cut	18917 (1.000)	1.417×10 ⁸ (1.000)	1.59	No Cut	12776 (1.000)	7.785×107 (1.000)	1.45
$N_{lep} = 0$	18880 (0.998)	$9.732 \times 10^7 (0.687)$	1.91	$N_{lep} = 0$	12752 (0.998)	4.893×107 (0.628)	1.82
Pre-Cut	18202 (0.962)	3.358×10 ⁶ (0.024)	9.91	Pre-Cut	12270 (0.960)	1.329×10 ⁶ (0.017)	10.6
$N_{pfo} > 15 \& N_{charged} > 6$	17918 (0.947)	$2.539 \times 10^{6} (0.018)$	11.2	$N_{pfo} > 15 \& N_{charged} > 6$	12067 (0.945)	852285 (0.011)	13.0
$p_{Tjj} \in (20, 80)$ GeV	16983 (0.898)	$1.368 \times 10^{6} (0.010)$	14.4	$p_{Tjj} \in (20, 80) \text{GeV}$	11394 (0.892)	285847 (0.004)	20.9
$M_{jj} \in (80, 100)$ GeV	14158 (0.748)	713194 (0.005)	16.6	$M_{jj} \in (80, 100) \text{GeV}$	9481 (0.742)	165798 (0.002)	22.6
$ \cos \theta_{jj} < 0.9$	13601 (0.719)	539921 (0.004)	18.3	$ \cos \theta_{jj} < 0.9$	9126 (0.714)	130070 (0.002)	24.5
$M_{recoil} \in (100, 160) \text{GeV}$	13585 (0.718)	244051 (0.002)	26.8	$M_{recoil} \in (100, 160) \text{GeV}$	9115 (0.713)	62979 (0.001)	33.9

SiD background rates greater because 3-fermion backgrounds are included (not used in ILD study)

Upper Limit Estimation

- Outlined in ILD paper
- Compute number of signal N_S and background N_B events surviving cuts
- Calculate significance $sig = N_S / \sqrt{N_S + N_B}$
 - For ILD shape fit, do this for each bin of m_{recoil} and Root Mean Square combine
 - For rough values, consider all events
- 95% confidence U.L[%]= $\frac{\text{SM }\mathcal{B}_{H \rightarrow \text{inv.}}[\%] \times 1.65}{sig}$

ILD Z(had) Backgrounds

	•	
type	process name	final state
Higgs	qqh_zz_4n (signal)	qq4v
	higgs_ffh	ffh
2f	2f_Z_bhabhag	eeγ
	2f_Z_hadronic	qq
	2f_Z_leptonic	$\mu\mu, \tau\tau$
4f	4f_singleW_leptonic	ενμν, εντν
	4f_singleW_semileptonic	$e v q_u q_d$
	4f_singleZee_leptonic	eeee, $ee\mu\mu$, $ee\tau\tau$, $ee\nu_{\mu}\nu_{\mu}$,
		$eev_{\tau}v_{\tau}$
	4f_singleZee_semileptonic	eeqq
	4f_singleZnunu_leptonic	$\mu\mu u_e u_e, au u_e u_e$
	4f_singleZnunu_semileptonic	$V_e V_e q_u q_u, V_e V_e q_d q_d$
	4f_singleZsingleWMix_leptonic	eeV_eV_e
	4f_WW_hadronic	ucq_dq_d , uuds, uudb, ccds, ccsb
	4f_WW_leptonic	$\mu v_{\mu} \tau v_{\tau}$
	4f_WW_semileptonic	$qq v_{\mu} \mu, qq v_{\tau} \tau$
	4f_ZZ_hadronic	$q_u q_u q_u q_u$, $q_d q_d q_d q_d$, uuss,
		uusb, uubb, ccdd, ccdb, ccbb
	4f_ZZ_leptonic	$\mu\mu\mu\mu$, $\tau\tau\tau\tau$, $\mu\mu\tau\tau$, $\tau\tau\nu_{\mu}\nu_{\mu}$,
		$\mu\mu u_{ au} v_{ au}$
	4f_ZZ_semileptonic	$\mu\mu$ qq, $ u_{\mu} u_{\mu}$ qq, $ u_{ au} u_{ au}$ qq, $ u_{ au}$ qq, $ u$
	4f_ZZWWMix_hadronic	uudd, ccss
	4f_ZZWWMix_leptonic	$\mu\mu u_{\mu} u_{\mu}, \tau\tau u_{\tau} u_{\tau}$

ILD Z(lep)

0

update: invisible decay using Z->ll @ ILC

- analysis is extremely simple: 2isolated-lepton + missing
- event selections are almost identical to leptonic recoil mass analysis
- except one more cut on visible 4momentum other than the di-lepton

P(e-,e+) = (+0.8,-0.3); 250 fb⁻¹@ 250 GeV

250 GeV BR(inv)=10%	μμΗ H->inv	llH (SM)	4f_1	4f_sl	4f_h	BG	significance
#expected	176	3778	3.67E+05	5.16E+05	3.92E+05	2.16E+07	0.037
pre-selection	166	1636	1.89E+05	1.30E+05	0	5.20E+05	0.23
cut0	133	1236	542	314	0	1084	2.7
cut_vis	130	3.0	314	0	0	325	6.1
cut_mva	122	2.9	227	0	0	232	6.4

Note: cut0 includes all the usual cuts used in leptonic recoil mass analysis

A. Steinhebel (U of Oregon)

LCWS 2021 Draft

ILD Z(lep) Cont'd

 $(Br(H \rightarrow inv.) = 10\%, 250 \text{ fb}^{-1} \text{ data})$

signal µµH, H→Inv

karound

invisible decay using Z->ll @ 250 GeV ignal µµH, H lackground IIH, H→SM μμ, eRpL

25

18 / 12