

Incident angle effect on the spatial resolution of an Asian GEM module

NAKAJIMA Jurina^A, FUJII Keisuke^B, YONAMINE Ryo^B, KOBAYASHI Makoto^B, MATSUDA Takeshi^B, OGAWA Tomohisa^B, AOKI Yumi^A, YUMINO Keita^A, NARITA Shinya^C, NEGISHI Kentaro^C, SHOJI Aiko^C, SUGIYAMA Akira^D, FUSAYASU Takahiro^E, TAKAHASHI Toru^F, WATANABE Takashi^G, KATO Yukihiro^H, IKEMATSU Katsumasa^I, SETTLES Ron^J, TIAN Junping^K, ARAI Daisuke^L, COLAS Paul^M, GANJOUR Serguei^M, DIENER Ralf^J, SCHÄFER Oliver^J, KAWADA Shin-ichi^J, MÜLLER Felix^J, JONSSON Leif^N, MJÖRNMARK Ulf^N, QI Huirong^O, KIHARA Daisuke^P and LCTPC collaboration

SOKENDAI^A, KEK^B, Iwate Univ.^c, Saga Univ.^D, Nagasaki Inst. of Applied Science^E, Hiroshima Univ.^F, Kogakuin Univ.^G, Kinki Univ.^H, Tohoku Univ.^I, DESY^J, Tokyo Univ^K, Fujikura Ltd^L, Université Paris-Saclay^M, Lund Univ.^N, Institute of High Energy Physics^O, Seigen Univ.^P

F

11, March 2021

LC-TPC Asian meeting

Beam test LP1 in 2016 and Data

Checking performance of Asian module with the gating foil and the field shaper

<u>Set up</u>

- ▶ Electron Beam [GeV] = 5
- ▶ B [T] = 1
- ▶ T2K gas (Ar:CF4:iso-C4H10 = 95:3:2)
- Frame work : Marlin TPC
- 20000evt / 1 run

→ Using FS data

jurina@post.kek.jp

Inclined Track Analysis

Incident angle effect on the spatial resolution

$$\sigma_x^2(Z; w, L \tan \phi, C_d, N_{eff}, \hat{N}_{eff}, [f]) = [A] + \frac{1}{N_{eff}} [B] + [C] + \frac{1}{\hat{N}_{eff}} [D]$$

Systematic error of the charge centroid method

$$[A] = \int_{-1/2}^{1/2} d\left(\frac{\tilde{x}}{w}\right) \sum_{N=1}^{\infty} P_{PI}(N; \bar{N}) \prod_{i=1}^{N} \left[\sum_{k_i=0}^{\infty} \bar{P}_{SI}(k_i)\right] \\
\times \left\{ \left(\sum_{a} (aw) \sum_{i=1}^{N} \langle \langle F_a \rangle_{\Delta x}^y \rangle_y^{k_i} \left\langle \frac{\sum_{j=1}^{k_i} G_{ij}}{\sum_{i=1}^{N} \sum_{j=1}^{k_i} G_{ij}} \right\rangle_G^{k_i, \sum_{i=1}^{N} k_i} - \tilde{x}\right)^2 \right\}$$

The diffusion term(Gas gain fluctuation & finite pad pitch) $[B] = \int_{-1/2}^{1/2} d\left(\frac{\tilde{x}}{w}\right) \left\langle \left(\sum_{a} (aw)F_{a}(\tilde{x} + \Delta x) - \sum_{a} (aw)\langle F_{a}(\tilde{x} + \Delta x)\rangle_{\Delta x}\right)^{2} \right\rangle.$

Electric noise
$$[C] = \left(\frac{\sigma_E}{\bar{G}}\right)^2 \left\langle \frac{1}{N^2} \right\rangle_N \sum_a (aw)^2$$

Angular Pad effect $[D] = \frac{L^2 \tan^2 \phi}{12\hat{N}_{eff}}$
 $\square = \tan^2 \phi \sigma_d \left\langle \frac{1}{\sum_{i=1}^N k_i} \right\rangle_{N,h} \left\langle \left(\frac{G}{\bar{G}}\right)^2 \right\rangle_C$

(Long drift limit: $\sigma_d \gg L$)

R.Yonamine,K.Fujii [https://doi.org/10.1088/1748-0221/9/03/C03002]

 $N_{eff} = \left[\left\langle \sum_{i=1}^{N} \sum_{i=1}^{k_i} \left\langle \left(\frac{\sum_{j=1}^{k_i} G_{ij}}{\sum_{i=1}^{N} \sum_{i=1}^{k_i} G_{ij}} \right) \right\rangle_{\alpha}^{k_i, \sum_{i=1}^{N} k_i} \right\rangle^{-1} \right]^{-1}$

 $\hat{N}_{eff} \approx \left[\left\langle \sum_{i=1}^{N} \left\langle \left(\frac{\sum_{j=1}^{k_i} G_{ij}}{\sum_{i=1}^{N} \sum_{i=1}^{k_i} G_{ij}} \right) \right\rangle_{G}^{k_i, \sum_{i=1}^{N} k_i} \right\rangle_{III} \right]^{-1}$

jurina@post.kek.jp

Inclined Track Analysis

How to decide ϕ

#20156, w/<u>FS</u>(Shaper time 120s), $\phi = 20^{\circ}$, B=1T

Track Analysis

Take 70% trim average for upper bound

Ignore the contribution from the tail

Track Analysis

GM Resolution for the inclined tracks

R.Yonamine,

https://doi.org/10.1088/1748-0221/9/03/C03002

GM Resolutin (Module3 Row16)

Test Result - Effective cluster number \hat{N}_{eff}

jurina@post.kek.jp

Track Analysis

Simulation - Effective cluster number \hat{N}_{eff}

Calculate the \hat{N}_{eff} in the same set up as the beam test

jurina@post.kek.jp

Inclined Track Analysis

Effective cluster number \hat{N}_{eff}

Evaluate the approximate theoretical formula

- Heed in Garfield++
- L(Pad height) = 5.26 [mm]
- Sas gain fluctuation : $\theta = 0.6$

 $P_G(G/\bar{G};\theta) = \frac{(\theta+1)^{\theta+1}}{\Gamma(\theta+1)} \left(\frac{G}{\bar{G}}\right)^{\theta} \exp\left(-(\theta+1)\left(\frac{G}{\bar{G}}\right)\right)$

- Ignore finite pad effect
- Ignore the magnetic field effect

- ➢ Analyze the beam test data for the inclined track
 →Confirm the inclined angular effect as expected
- ▶ How about \hat{N}_{eff} ? →Need to more improvements in our simulation
- Evaluate the approximate theoretical formula of \hat{N}_{eff} \rightarrow Two our simulation match.