Measurement of $\sigma(e^+e^- \rightarrow HZ) \times Br(H \rightarrow ZZ^*)$ at the 250 GeV ILC Status report

<u>Antonov Evgeny</u> (LPI, MEPhI), Drutskoy Alexey (LPI, MEPhI)

10 March 2021

Content

Introduction

Simulated event samples and analysis tools

Event selections and pre-analysis

Study of the sub-processes

Conclusions

Introduction

The width of the Higgs boson *is difficult to measure at LHC in a model-independent approach (* the uncertainty ~20% after luminosity upgrade)

We propose to use the process $e^+e^- \rightarrow HZ$ with the subsequent decay $H \rightarrow ZZ^*$ to measure:

 $-(++) = (17) \times D_{11}(11 + 77*) - C_{12} = 4/D_{12}$

$$One of Z bosons is reconstructed in jets.$$

$$Z \rightarrow jj or ll, \quad Z^* \rightarrow ll \ or jj$$

$$One of Z bosons is reconstructed in jets.$$

$$Constant, \\Error < 1\% \\expected$$

$$Coupling HZZ \\Error < 0.5\% \\expected$$

Studied MC processes

Signal subprocesses with large **significance**:

Significant backgrounds:

- 1) $e^+e^- \rightarrow Z_1(j_1j_2)H$, $H \rightarrow Z(j_1j_2)Z^*(l_1l_2) \leftarrow 6$ -fermion $jjjjl^+l^-$ background for channel 1 Examples: $WW\gamma$ and $ZZ\gamma$
- 2) $e^+e^- \rightarrow Z_1(j_1j_2)H$, $H \rightarrow Z(l_1l_2)Z^*(j_1j_2)$
- 3) $e^+e^- \rightarrow Z_1(\nu\overline{\nu})H$, $H \rightarrow Z(j_1j_2)Z^*(l_1l_2) \longleftarrow b\overline{b} \rightarrow jj l^+l^-\nu\overline{\nu}$ background for channel 3
- 4) $e^+e^- \rightarrow Z_1(\nu\overline{\nu})H$, $H \rightarrow Z(l_1l_2)Z^*(j_1j_2)$

We tried to study events with 4 leptons. However number of such signal events is too small.

Samples parameters and analysis tools

- Samples generated with Whizard 2.8.5
- *ILD_I5_o1_v02* detector model
- 100% initial beam polarization LR
- Initial state radiation (ISR) on
- γγ overlay on

- *ILC-Soft v02-00-02*
- IsolatedLeptonTagging processor
- FastJet processor (with Valencia jet reconstruction algorithm)
- Some additional processors

Samples parameters

Process ID	Process Name	Polarization	Integrated luminosity, fb^{-1}	Cross section, fb^{-1}	Number of events			
Signal samples								
402011	qqh	eLpR	$1.458\cdot 10^3$	343.030	$5\cdot 10^6$			
402007	n1n1h		$8.285 \cdot 10^3$	60.351	$5\cdot 10^6$			
402009	n23n23h		$7.450 \cdot 10^{3}$	67.111	$5\cdot 10^6$			
Background samples								
401012	6f_ll_xyyx	eLpR	$5.816 \cdot 10^{3}$	3.439	20000			
500010	2f_Z_hadronic		$5.510 \cdot 10^3$	7667.390	$38344 \cdot 10^3$			

Table shows the basic information about all used samples (taken from *generator meta data section of ELOG*)

Event selection

Sub-process	MC generator level extraction, N events	Isolated leptons tagging, N events	Weight factors	Number of weighted events
$\begin{array}{c} Z_1 \rightarrow j_1 j_2, Z \rightarrow j_1 j_2, \\ Z^{\star} \rightarrow l_1 l_2 \end{array}$	605	416	0.803	334
$\begin{array}{c} Z_1 \rightarrow j_1 j_2, Z \rightarrow l_1 l_2, \\ Z^{\star} \rightarrow j_1 j_2 \end{array}$	578	508	0.803	407
$ \begin{array}{c} Z_1 \rightarrow \nu_e \overline{\nu}_e, Z \rightarrow j_1 j_2, \\ Z^{\star} \rightarrow l_1 l_2 \end{array} $	636	544	0.071	38
$\begin{array}{c} Z_1 \rightarrow \nu_e \overline{\nu}_e, Z \rightarrow l_1 l_2, \\ Z^{\star} \rightarrow j_1 j_2 \end{array}$	594	468	0.071	33
$ \begin{aligned} Z_1 &\to \nu_{\mu,\tau} \bar{\nu}_{\mu,\tau}, Z \to j_1 j_2, \\ Z^* &\to l_1 l_2 \end{aligned} $	626	534	0.157	83
$ \begin{aligned} Z_1 &\to \nu_{\mu,\tau} \overline{\nu}_{\mu,\tau}, Z \to l_1 l_2, \\ Z^{\star} &\to j_1 j_2 \end{aligned} $	588	455	0.157	71

- Extraction of each sub-processes from initial samples
- ILT: finding events with 2 leptons
- Polarization weight factors to correct for P = (0.8, 0.3):

$$w = \frac{\sigma_{LR \; eff} \cdot \mathcal{L}}{N_{events}}$$

$$\mathcal{L} = 2000 \ fb^{-1}$$

$$LR: \ \sigma_{LR \ eff} = \sigma_{LR} \cdot \frac{(1+0,8)}{2} \cdot \frac{(1+0,3)}{2}$$

We tried to study RL polarization signal events. However number of such signal events is too small.

ISR and overlay removing

γγ overlay removed using *kT jet clustering*

From arXiv:2009.04340:

ISR photon candidate is selected if its energy E_{photon} is greater than 10 GeV

All charged particles in a cone with $\cos \theta_{cone} = 0.95$ around the photon are summed up.

 $E_{sum} < 5\% E_{photon} \rightarrow$ ISR photon

Jet reconstruction

Valencia algorithm is used to force the remaining particles into 2 or 4 jets.

It contains 3 parameters: R - generalized jet radius, γ and β - special capture parameters in beam distance

We use $\beta = 1$ and tune *R* and γ with this method *from arXiv:1607.05039*:

$$\Delta M(Z) = M_{reco}(Z) - M_{gen}(Z)$$

Median = Q(0.5)

Choosing combination of minimum of IQR34, RMS90 and close to 0 median

$$IQR_{34} = \frac{Q(0.84) - Q(0.16)}{2}$$

$$RMS_{90} = \sqrt{(|M_{mean}^2 - M_{mean}|)}$$

$$M_{mean} = \frac{\sum \Delta M(Z)}{N_{entries}}$$

$$M_{mean}^2 = \frac{\sum (\Delta M(Z))^2}{N_{entries}}$$

Jet reconstruction

Tune for *Z(jj)*

R[0.1, 3.0] and *γ*[0.1, 1.0] ranges

Jet reconstruction

Tune for *Z**(*jj*)

R[0.1, 3.0] and *γ*[0.1, 1.0] ranges

Minimum χ^2_{min} calculation

$$\chi^{2}_{min} = \frac{(M_{Z_{1}} - M_{Z_{nom}})^{2}}{\sigma^{2}_{M_{Z_{1}}}} + \frac{(M_{Z} - M_{Z_{nom}})^{2}}{\sigma^{2}_{M_{Z}}} + \frac{(P_{Z_{1}} - P_{Z_{nom}})^{2}}{\sigma^{2}_{P_{Z_{1}}}} + \frac{(P_{Z+Z^{*}} - P_{Z_{nom}})^{2}}{\sigma^{2}_{P_{Z+Z^{*}}}};$$

 $Z_1 \rightarrow jj, Z \rightarrow jj, Z^* \rightarrow ll$

6 combinations of jets:

1) J1+J2, J3+J4

2) J1+J3, J2+J4

3) J1+J4 , J2+J3

- 4) J2+J3, J1+J4
- 5) J2+J4, J1+J3
- 6) J3+J4, J1+J2

$$M_{Z nom} = 91.2 \, GeV$$

 $P_{Z nom} = 60.0 \, GeV$

 $\sigma_{M_{Z_1}}^2 = 11.41 \ GeV$ $\sigma_{M_Z}^2 = 13.97 \ GeV$ $\sigma_{P_{Z_1}}^2 = 9.62 \ GeV$ $\sigma_{P_{Z+Z^*}}^2 = 7.16 \ GeV$

All σ are estimated from data:

 $Z_1 \rightarrow jj, Z \rightarrow jj, Z^* \rightarrow ll$

VLC: $\gamma = 0.4$ R = 1.6

Significance of this channel = **11.2%**

Signal is modelled by **Voigtian + Gaussian** function Wide gaussian comes from **Z**^{*}**Z**^{*} tail Background is described by **Chebychev3** function ¹³

 $Z_1 \rightarrow jj, Z \rightarrow jj, Z^* \rightarrow ll$

The distribution peak of mass difference is more compact then peak of direct Higgs boson mass reconstruction

Minimum χ^2_{min} calculation

 $Z_1 \rightarrow jj, Z \rightarrow ll, Z^* \rightarrow jj$

6 combinations of jets:

- 1) J1+J2, J3+J4
- 2) J1+J3, J2+J4
- 3) J1+J4 , J2+J3
- 4) J2+J3, J1+J4
- 5) J2+J4, J1+J3
- 6) J3+J4 , J1+J2

$$M_{Z nom} = 91.2 \, GeV$$

 $P_{Z nom} = 60.0 \, GeV$

 $E_{Z nom} = 110.0 \, GeV$

 $\sigma_{M_{Z_1}}^2 = 21.84 \ GeV$ $\sigma_{P_{Z_1}}^2 = 5.42 \ GeV$ $\sigma_{P_{Z+Z^*}}^2 = 10.37 \ GeV$ $\sigma_{E_{Z_1}}^2 = 4.86 \ GeV$

All σ are estimated from data:

$Z_1 \rightarrow jj, Z \rightarrow ll, Z^{\star} \rightarrow jj$

VLC: $\gamma = 0.4$ R = 0.7

Signal is modelled by Gaussian function

Suppression of uncorrelated *ll* backgrounds and *Z*^{*}*Z*^{*} events using *M(ll)* and *E(jjjjll)* cuts

Significance of this channel = **5.9%**

Significance of this channel = **13.5%**

Signal is modelled by Voigtian function Background is described by Argus_inverted custom function 17

 $Z_1 \rightarrow \nu \nu, Z \rightarrow ll, Z^* \rightarrow jj$

VLC: γ = 0.3 *R* = 1.4

Signal is modelled by Gaussian+Gaussian function

Small tail from Z^*Z^* events

Suppression of uncorrelated *ll* backgrounds and Z^*Z^* events using *M(ll)* and *P(jjll)* cuts.

Significance of this channel = **10.7%**

4 leptons channels

 $Z_1 \rightarrow jj, Z \rightarrow ll, Z^{\star} \rightarrow ll$

$$Z_1 \rightarrow ll, Z \rightarrow jj, Z^{\star} \rightarrow ll$$

$$Z_1 \rightarrow ll, Z \rightarrow ll, Z^{\star} \rightarrow jj$$

Integrated significance of this method

We use this formula for full significance calculation:

$$\frac{1}{Sign} = \sqrt{\left(\frac{N_{ch\,1}}{Err_{ch\,1}}\right)^2 + \left(\frac{N_{ch\,2}}{Err_{ch\,2}}\right)^2 + \left(\frac{N_{ch\,3}}{Err_{ch\,3}}\right)^2 + \left(\frac{N_{ch\,4}}{Err_{ch\,4}}\right)^2}$$

$$\frac{1}{Sign} = \sqrt{\left(\frac{232}{26}\right)^2 + \left(\frac{289}{17}\right)^2 + \left(\frac{69.8}{9.3}\right)^2 + \left(\frac{88.4}{9.5}\right)^2}$$

Then full statistical significance of this method: Sign = 4.4%

Systematic uncertainty comes mostly from background shape description. Still this uncertainty is smaller then statistical one. It is difficult to estimate precisely without real data. Systematics due to reconstruction efficiency is small.

Conclusions

We studied $e^+e^- \rightarrow HZ$ process with $H \rightarrow ZZ^*$ decay.

Four channels were studied, corresponding signals and backgrounds were estimated using MC simulation.

Full significance of this method = 4.4%.

Thank you for attention

 $Z_1 \rightarrow jj, Z \rightarrow jj, Z^{\star} \rightarrow ll$

 $Z_1 \rightarrow jj, Z \rightarrow jj, Z^* \rightarrow ll$

 $Z_1 \rightarrow jj, Z \rightarrow jj, Z^* \rightarrow ll$

 $Z_1
ightarrow jj, Z
ightarrow ll, Z^{\star}
ightarrow jj$

 $Z_1 \rightarrow jj, Z \rightarrow ll, Z^{\star} \rightarrow jj$

 $Z_1 \rightarrow jj, Z \rightarrow ll, Z^{\star} \rightarrow jj$

 $Z_1
ightarrow
u_e
u_e$, Z
ightarrow jj , $Z^\star
ightarrow ll$

 $Z_1
ightarrow
u_{\mu, au}
u_{\mu, au}$, Z
ightarrow jj , $Z^{\star}
ightarrow ll$

 $Z_1 \rightarrow \nu \nu, Z \rightarrow jj$, $Z^\star \rightarrow ll$

 $Z_1
ightarrow
u_e
u_e$, Z
ightarrow jj , $Z^\star
ightarrow ll$

 $Z_1
ightarrow
u_{\mu, au}
u_{\mu, au}$, Z
ightarrow jj , $Z^{\star}
ightarrow ll$

 $Z_1 \rightarrow \nu \nu, Z \rightarrow jj$, $Z^\star \rightarrow ll$

 $Z_1
ightarrow
u_e
u_e$, Z
ightarrow jj , $Z^\star
ightarrow ll$

 $Z_1 o
u_{\mu, au}
u_{\mu, au}$, Z o jj , $Z^\star o ll$

 $Z_1 \rightarrow \nu \nu, Z \rightarrow jj, Z^{\star} \rightarrow ll$

 $Z_1
ightarrow
u_e
u_e$, Z
ightarrow ll , $Z^\star
ightarrow jj$

 $Z_1 o
u_{\mu, au}
u_{\mu, au}$, Z o ll , $Z^{\star} o jj$

 $Z_1
ightarrow
u
u, Z
ightarrow ll$, $Z^{\star}
ightarrow jj$

 $Z_1
ightarrow
u_e
u_e$, Z
ightarrow ll , $Z^\star
ightarrow jj$

$${Z}_1 o
u_{\mu, au}
u_{\mu, au}$$
 , $Z o ll$, $Z^\star o jj$

 $Z_1
ightarrow
u
u, Z
ightarrow ll$, $Z^{\star}
ightarrow jj$

 $Z_1
ightarrow
u_e
u_e$, Z
ightarrow ll , $Z^\star
ightarrow jj$

$${Z}_1 o
u_{\mu, au}
u_{\mu, au}$$
 , $Z o ll$, $Z^\star o jj$

 $Z_1
ightarrow
u
u, Z
ightarrow ll, Z^{\star}
ightarrow jj$

