Prospects for the measurement of the bottom quark mass at the ILC

- <u>S. Tairafune^a</u>, J. Fuster^b, A. Irles^b, German Rodrigo^b, H. Yamamoto^b, R. Yonamine^a Tohoku University^a
 - IFIC, Universitat de Valéncia and CSIC^b

Background of This Study

b quark mass and New Physics

- MS running mass : Mass which has energy dependence QCD Renormalized Group Equation : $\mu^2 \frac{\partial m_q(\mu)}{\partial \mu^2} = -\gamma \left(\alpha_s(\mu) \right) m_q(\mu)$ $\frac{\gamma(\alpha_s(\mu))}{\mu}$: energy scale of experiments
- Energy dependence deviates from SM's expectation by new particles's effect (SUSY etc).
- No indication of new physics in b quark mass at Z-pole (\sim 91GeV).
 - \rightarrow b quark mass at higher energy scale above Z-pole can be SM's test and a probe of new physics.

 $\gamma(\alpha_s(\mu))$: Perturbative function

Purpose of This study

- through simulation.
- $\blacksquare q\overline{q}$ production by e^+e^- collision

Definition of Observable

 \blacksquare Heavier quark tends to be difficult to emit gluon $q \rightarrow q + g$.

- $\rightarrow b$ quark mass sensitivity appears on 3-jet events after gluon radiation.
- Define the fraction of 3-jet ratio for $e^+e^- \rightarrow q\overline{q}$.

$$R_{3}^{bl} = \frac{N_{3b}/N_{b}}{N_{3l}/N_{l}}$$

= $1 + \frac{\alpha_{s}}{\pi}a_{LO} + \frac{m_{b}^{2}}{s}\left(b_{LO}(m_{b}) + \frac{\alpha_{s}}{\pi}b_{NLO}(m_{b})\right)$

 a_{LO} , b_{LO} : LO corrections b_{NLO} : NLO correction \sqrt{s} : CM energy

Sensitivity of b quark mass

For higher CM energy experiment, b quark mass becomes smaller relatively. $\rightarrow b$ quark mass sensitivity be lower at higher energy scale.

$$R_{3}^{bl} = \frac{N_{3b}/N_{b}}{N_{3l}/N_{l}} = 1 + \frac{\alpha_{s}}{\pi}a_{LO} + \frac{m_{b}^{2}}{s}\left(b_{LO}(m_{b}) + \frac{\alpha_{s}}{\pi}b_{NLO}(m_{b})\right)$$

b quark mass sensitivity

CM energy

Necessary precision of R_3^{bl} for $\Delta m_b = 0.4 \text{Ge}^3$

on
$$R_3^{bl}$$
: $\Delta R_3^{bl} = 2(1 - R_3^{bl}) \frac{\Delta m_b}{m_b}$

	Z-pole	250GeV
V	~1%	~0.1%

Flow of Simulation and Analysis

Flow of Simulation & Analysis

- 1. Generate Signal · Background events ····· ► Measure Signal : $e^+e^- \rightarrow q\overline{q} \rightarrow Jets$, Backgrounds : explain after
- 2. Detector Simulation \cdot Event reconstruction
- 4. Estimate corrections of hadronization and detector
- 5. Estimate *b* quark mass precision

 R_3^{bl} @ Parton R_3^{bl} @ Hadronization

Set up of Analysis

Process : $e^+e^- \rightarrow q\overline{q}$ (q = udscb)

CM energy : 250GeV

2 pure polarization configurations :

	е_	e^+
Left components	100%	0%
Right components	0%	100%
	1	•

Luminosity : 250fb^{-1}

- Estimate b quark mass precision under the following polarizations
 - by mixing above pure samples :

(-0.8, +0.3)

	e^{-}	e^+	
Left components	90%	35%	
Right components	10%	65%	
Luminosity: 900fb ⁻¹			

	е_	e^+
Left components	0%	100%
Right components	100%	0%

Luminosity : 250fb^{-1}

(+0.8, -0.3)

	<i>e</i> ⁻	e^+
Left components	10%	65%
Right components	90%	35%
Right components	10% 90%	65% 35%

Luminosity : 900fb^{-1}

Reconstruction of Jets

Define d_{ii} between i^{th} and j^{th} tracks (Cambridge algorithm) : $d_{ij} = \min(E_i^2, E_j^2) \frac{1 - \cos \theta_{ij}}{1 - \cos R} \quad (R = 1.25) \quad E_i : \text{Energy of } i^{th} \text{ track}$

If $d_{ii} < y_c$, these tracks are included in a same jet.

Focuses on $y_c = 0.01$.

Bundle until 2-jet events by loosing y_c for later analysis of backgrounds.

Flavor Identification

Impose the following conditions to each j *b*-likelihood > $0.8 \rightarrow b$ events *b*-likelihood < 0.4 & c-likelihood < $0.25 \rightarrow uds$ ev

jet	Efficiency of	Purity of	Efficiency of	Purity
	b ID	b ID	uds ID	uds
/ents	80%	98.7%	58%	96.1

Cut of Background events

Types of Main Background events

Background event 1: Radiative return (Collision energy decreases by radiation)

Background event2: 4-jet events (Can be mis-identified the number of jets)

Cut of Radiative return

If radiation can not detect…

 \rightarrow Construct energy of radiation K_{γ} from angles of jets,

and cut $K_{\gamma} > 50 \text{GeV}$. $K_{\gamma} \equiv \frac{250 GeV \cdot \sin \psi_{acol}}{\sin \psi_{acol} + \sin \theta_1 + \sin \theta_2}$

- If radiation is detected, cut it by using neutral PFO.
 - Invariant mass of whole jets less than 130GeV 1.
 - 2. Each jet should include particles more than 5
 - 3. Jets include neutral particles which have energy of more than 50 GeV at $|\cos \theta| > 0.98$

100% Left polarized	(Remained BKG)/(Selected Signal)
b quark	1.2%
uds quarks	1.3%

- ψ_{acol} : Angle between 2 jets
- $heta_1, heta_2$: Polar angles of each jet

Cut of 4-jet events

 \rightarrow Cut by using Thrust T (T < 0.85)

N: Total number of particles in jets

n: unit vector of the thrust axis

If 4-jet events are forced to reconstruct as 2-jet events, shapes tend to be wider.

LCWS2021 2021.3.18 S. Tairafune (Tohoku University)

Γhrust Axis

Measurement of the Observable

Measured Results of Observable

Reco level is corrected to Parton level by corrections of hadronization and detector. Parton level can be compared to theory.

Each level R_3^{bl} by MC (100% Left polarized)

Consideration of obtained results

■ b is heavier than $uds \rightarrow R_3^{bl} = \frac{N_{3b}/N_b}{N_{3l}/N_l} < 1$

But obtained result is $R_3^{bl} > 1$

Numbers of 3-jet events are ~10 times less than the SM's expectation. → MC has some problems?

■ When examine MC …
b quark is massless, gluon radiation is LO in WHIZARD.
→ MC is updating to NLO+massive now.

Estimation of Errors

Estimation of Statistical error

Statistical error on R_3^{bl} :

 $R_{3}^{bl} = \frac{N_{3b}/N_b}{N_{3l}/N_l} \rightarrow \frac{\Delta R_{3}^{bl}}{R_{3}^{bl}} (stat.) = \frac{1}{\sqrt{N_{3b}}} + \frac{1}{\sqrt{N_{3l}}} + \frac{1}{\sqrt{N_b}} + \frac{1}{\sqrt{N_l}} \qquad N_{3q} : 3 \text{-jet events number}$

Estimate under 2ab⁻¹ of 250 GeV ILC

Polarization (P_{e^-}, P_{e^+}) (-0.8,+0.3) Integrated luminosity 900fb⁻¹

Assumed the proportion of 3-jet events is 30% of the all jet events number.

 R_3^{bl}

	All jet events (MC)		3-jet events (仮定)	
	N_b	N_l	$N_{3b} = 0.3N_b$	$N_{3l} = 0.3N_l$
(-0.8,+0.3%)	1,210,601	1,659,628	363,180	497,888
(+0.8%,-0.3%)	341,956	596,210	102,587	178,863
$\frac{\Delta R_3^{bl}}{M}(stat_1) = 0.25\% \text{ for } (-0.8 \pm 0.3) = 0.45\% \text{ for } (\pm 0.8 \pm 0.3)$				

(+0.8,-0.3)	(-0.8,-0.3)	(+0.8,+0.3)
900fb ⁻¹	100fb ⁻¹	100fb ⁻¹

(10.0, 10.0), 0.70, 0.70, 0.00, 0.00)

Types of Systematic errors

Appear systematic errors on corrections C^{had} , C^{det} .

2. Detector error : Estimate the uncertain

Reco Level $R_3^{bl Par} = C^{had} C^{det} R_3^{bl Rec}$ Corrections of hadronization and detector

1. Hadronization error : Estimate the uncertainty on $C^{had} \equiv \frac{R_3^{bl Par}}{R_3^{bl Had}}$.

ainty on
$$C^{det} \equiv \frac{R_3^{bl \; Had}}{R_3^{bl \; Rec}}$$
.

Estimations of Systematic errors

- Hadronization model error
 - Mis-identification of jets will be decreased than LEP
 - Understanding of hadronization will be developed than LEP
 - \rightarrow Assume the half of LEP's result : $\Delta C^{had}/C^{had} = 0.1\%$
 - Detector error Estimate appeared uncertainties on *C*^{det} from 3 element's uncertainties by ToyMC. Common uncertainties for jet's number and flavor are cancelled.

	Each	Uncertainties on C ^{det}		
	Uncertainty		100% Right polarized	
Flavor tag	0.5%	0.07%	0.06%	
Signal selection	1%	0.06%	0.06%	
Contamination of BKG	1%	0.20%	0.10%	
Total		0.22%	0.13%	

han LEP loped than LEP

Result and Summary

Result of This study

Precision of R_3^{bl} :

- $\frac{\Delta R_3^{bl}}{R_2^{bl}} = 0.25(stat.) \pm 0.22(exp.) \pm 0.1(had.)[\%] \text{ for } (-0.8, +0.3)$
- $\frac{\Delta R_3^{bl}}{R_3^{bl}} = 0.45(stat.) \pm 0.13(exp.) \pm 0.1(had.)[\%] \text{ for } (+0.8, -0.3)$ (3-jet events number is assumed to be 30% of all jet events number.)
- Estimation of *b* quark mass precision : *b* quark mass sensitivity on R_3^{bl} : $\frac{\Delta m_b}{m_b} = \frac{\Delta R_3^{bl}}{2(1-R_2^{bl})}$ Precision for $R_3^{bl} = 0.996$, $m_b = 2.75 \text{GeV}$:

 $\Delta m_b (250) = 0.85(stat.) \pm 0.75(exp.) \pm 0.34(had.) \pm 0.07(theo.) \text{GeV for } (-80\%, +30\%)$ $\Delta m_b (250) = 1.53(stat.) \pm 0.44(exp.) \pm 0.34(had.) \pm 0.07(theo.) \text{GeV for } (+80\%, -30\%)$

Theoretical uncertainty : come from renormalized scale and quark mass definition LCWS2021 2021.3.18 S. Tairafune (Tohoku University)

ILC Prospects

250GeV measurement is challenging, but it will provide an extra point at never probed energies.

Giga-Z ILC (ILC@Z-pole)

- Statistics is 100 times larger
- ILD superior the performance of flavor tagging
- Hadronization error will be half thanks for development of model

LEP : $\Delta m_b (M_Z) = 0.18(stat.) \pm 0.13(exp.) \pm 0.19(had.) \pm 0.12(theo.)$ GeV ILC : $\Delta m_b (M_Z) = 0.02(stat.) \pm 0.02(exp.) \pm 0.09(had.) \pm 0.06(theo.)$ GeV

Summary

■ *b* quark mass precision at 250 GeV : $\Delta m_b (250) = 0.85(stat.) \pm 0.75(exp.) \pm 0.34(had.) \pm 0.07(theo.)$ GeV

 $\Delta m_b (250) = 1.53(stat.) \pm 0.44(exp.) \pm 0.34(had.) \pm 0.07(theo.) \text{ GeV}$

■ WHIZARD is updating to NLO+massive quarks.

Giga-Z ILC provides better measurement of b quark mass at Z-pole :

 $\Delta m_b (M_Z) = 0.02(stat.) \pm 0.02(exp.) \pm 0.09(had.) \pm 0.06(theo.) \text{ GeV}$

Backup

Unification of 3rd generation particles

- Scenario changes according to the ratio of vacuum expectation value of SUSY Higgs $\tan \beta$.
 - $\tan \beta \sim 3 11$: *b*- τ Yukawa coupling is unified

 $\tan \beta \sim 35 - 60$: *b*- τ -*t* Yukawa coupling is unified

arXiv:1201.4412 [hep-ph] arXiv:1604.02156 [hep-ph]

Polarization

Polarization rate :
$$P_{e^{-(+)}} \equiv \frac{f_R - f_L}{f_R + f_L} f_R$$

$(P_{e^{-}}, P_{e^{+}}) = (+80\%, +30\%)$

	e^{-}	e^+
Left	10%	35%
Right	90%	65%

Luminosity : 100fb^{-1}

 $e_L^- e_R^+$: 17fb⁻¹

How to mix :

 $(P_{e^{-}}, P_{e^{+}}) = (-80\%, -30\%)$

	e^{-}	e^+
Left	90%	65%
Right	10%	35%

Luminosity : 100fb^{-1}

 $e_L^- e_R^+$: 83fb⁻¹

100% Left polarized

$$\sigma(P_{e^{-}}, P_{e^{+}}) = \frac{1}{4} \left(\left(1 - P_{e^{-}} \right) \left(1 + P_{e^{+}} \right) \sigma_{L} + \left(1 - P_{e^{-}} \right) \left(1 + P_{e^{+}} \right) \sigma_{L} \right) + \left(1 - P_{e^{-}} \right) \left(1 + P_{e^{+}} \right) \sigma_{L} + \left(1 - P_{e^{-}} \right) \left(1 + P_{e^{+}} \right) \sigma_{L} \right)$$

- : proportion of left handed components
- : proportion of right handed components

 $e_L^-e_L^+$ and $e_R^-e_R^+$ for quark pair production from e^+e^- are vanished by angular momentum conservation.

About the number of $m_b(m_b)$

Green marker is the word average of PDG $m_b(m_b) = 4.18^{+0.03}_{-0.02} \text{ GeV}$

Main experiments : ZEUS @ HERA (2018) arXiv:1804.01019 [hep-ex] The e-p deep inelastic scattering depends on b mass.

BABAR @ PEP-II (2009) arXiv:0908.0415 [hep-ex] Belle @ KEKB (2008) <u>arXiv:0803.2158</u> [hep-ex] Semi-leptonic decay of B meson(e.g. $B \rightarrow X_c l\nu_l$) depends on b mass.

