

Study of H γ Z coupling using e⁺e⁻ $\rightarrow \gamma$ H at the ILC

Yumi Aoki(SOKENDAI), Junping Tian(Tokyo Univ.) , Keisuke Fujii(KEK), Sunghoon Jung(Seoul National Univ.), Junghwan Lee(Seoul National Univ.)

2021.4.16(Fri) @Asian Physics&Analysis mtg

1.Motivation

To find new physics via $H\gamma\gamma$ and $H\gammaZ$ couplings

Higgs to γZ coupling in the Standard Model (SM) is a loop induced coupling. \rightarrow We expect BSM amplitude can be larger than SM amplitude.

This process can be also useful to constrain the dimension 6 EFT operators which can introduce effective anomalous $h\gamma Z$ and $h\gamma \gamma$ couplings.

Q. H. Cao, et al, arXiv:1505.00654 [hep-ph]

Any deviation of the coupling constants from SM signals new physics.

2.Two ways to measure H_YZ coupling

5

3. Theoretical framework for our analysis

The effective field theory (EFT) Lagrangian to include new physics contributions to the $e^+e^- \rightarrow H\gamma$ cross section model-independently

Since ζ_A is already constrained by measurement of $H \rightarrow \gamma \gamma$ branching ratio at LHC, we can extract ζ_{AZ} parameter by just measuring cross section for a single beam polarization.

4. Simulation framework

√s=250 GeV
Integrated Luminosity: 2000 fb ⁻¹
(900 fb ⁻¹ each for Left / Right handed pol.)

- background : 2f,4f (DBD sample)
- ISR and Beamstrahlung effects are included
- ILD full simulation (Mokka)
- Geant4 based, realistic detailed detector model
- Full reconstruction chain from detector signals to 4-vectors (iLCSoft v01-16-02/ MarlinReco, PandoraPFA, LCFI+, Isolated photon finder, jet clustering)

► E_γ > 50 GeV

4. Simulation framework - New Generator

New

Implemented with EFT coefficients matched to SM $h \rightarrow \gamma \gamma$ / γZ loop calculations

(without SM loop)

Implemented with full SM 1-loop calculations

h \rightarrow bb 5. Analysis - Signal & Backgrounds Signal: $e^+e^- \rightarrow \gamma H \rightarrow \gamma (b\overline{b})$ Circul circultures

Signal signatures

1. Isolated monochromatic photon with energy 93 GeV

2. 2 b jets

3. m(bb) (invariant mass) = Higgs mass

Main backgrounds

$$e^+e^- \rightarrow \gamma Z \rightarrow \gamma q q$$

 e^{-}

Н

h→WW* semi leptonic

5. Analysis - Event selection

Cut 1: b likeliness1>0.77 Cut 2: missing energy<35 GeV

9

h→bb h→WW* semi leptonic

12

5. Analysis - Signal & Backgrounds

Signal: $e^+e^- \rightarrow \gamma h \rightarrow \gamma (WW^*)$

one W decays hadronically (W1), and another decays leptonically(W2)

Signal signatures

1. there is one isolated monochromatic photon with energy 93 GeV

2. there are 2 jets that originated from the hadronically decayed W

- 3. the sum of four momenta of the 2 jets, the lepton and leptin neutrino is consistent with Higgs hypothesis,
- 4. either one of the 2 jets or the lepton-neutrino systems has an invariant mass consistent with the on-sell W hypothesis5.there are no b-quark jets

Main backgrounds $e^+e^- -> W^+W^-(\gamma)$

h→WW* semi leptonic

13

5. Analysis - Event selection

|mw1-80.4|<10 GeV or |mw2-80.4|<9.4 GeV

b likeliness<0.77 : to except overlap with bb

h→WW* semi leptonic

5. Analysis - Reduction table and upper limit(Left handed)

Reduction table

 $significance = \frac{N_s}{\sqrt{N_s + N_B}}$

N_s:Number of signal N_B:Number of background

	total bg	Signal	Significance	
Expected	1.4×10 ⁸	107	0.01	
Pre selection	2.9×10 ⁷	100	0.02	
b likeliness>0.77	2,2×10% 01	y 90	0.06	
Emis<35	Pra.9×106	82	0.06	
mvabdt > 0.025	19583	34	0.24	
-0.92 <cosθγ<0.92< td=""><td>12422</td><td>29</td><td>0.26</td></cosθγ<0.92<>	12422	29	0.26	

Dominant background : $e^+e^- \rightarrow \gamma Z \rightarrow \gamma qq$

 \rightarrow 95% C.L upper limit $\sigma_{\gamma H} = \sigma_{SM} + \frac{1.64}{\text{significance}} \sigma_{SM}$

=2.6 [fb] (Left handed beam polarization case)

h→WW* semi leptonic

5. Analysis - Reduction table and upper limit(Right handed)

Reduction table

 $significance = \frac{N_s}{\sqrt{N_s + N_B}}$

N_s:Number of signal N_B:Number of background

	total bg	Signal	Significance
Expected	7.8×10 ⁷	11.2	0.001
Pre selection	2.3×10 ⁷	10.3	0.002
b likeliness>0.77	1,5×109001	y 9.4	0.008
Emis<35	Prq.3×106	8.4	0.007
mvabdt > 0.025	1.0×104	3.4	0.034
-0.92 <cosθγ<0.92< td=""><td>5.9×10³</td><td>3.0</td><td>0.039</td></cosθγ<0.92<>	5.9×10 ³	3.0	0.039

→95% C.L upper limit
$$\sigma_{\gamma H} = \sigma_{SM} + \frac{1.64}{\text{significance}} \sigma_{SM}$$

= 0.7 [fb] (Right handed beam polarization case)

h→WW* semi leptonic

17

5. Analysis - Reduction table and upper limit(Left handed)

	total bg	Signal	Significance
Expected	1.4×10 ⁸	18.0	0.003
Pre selection	1.3×10 ⁷	10.5	0.004
# of charged particle >3	3.1×10 ⁵	5.4	0.010
mw1-80.4 <10 GeV or	minary	27	0.000
mw2-80.4 <9.4 GeV Prell		3.7	0.009
b likeliness<0.77	1.8×10 ⁵	3.7	0.009
mvabdt>0.1	41	1.0	0.16
-0.93 <cosθ<sub>γ<0.93</cosθ<sub>	8	0.9	0.31

Dominant background : $e^+e^- \rightarrow W^+W^-$

 \rightarrow 95% C.L upper limit $\sigma_{\gamma H} = \sigma_{SM} + \frac{1.64}{\text{significance}} \sigma_{SM}$ (e-,e+=-100,+100) =2.2 [fb] (Left handed)

h→WW* semi leptonic

18

5. Analysis - Reduction table and upper limit(Right handed)

	total bg	Signal	Significance
Expected	7.8×10 ⁷	1.9	0.000
Pre selection	1.2×10 ⁷	2.0	0.000
# of charged particle >3	8.6×10 ⁴	1.5	0.002
mw1-80.4 <10 GeV or	minary	0.4	0.002
mw2-80.4 <9.4 GeV Prell	DYZ × TUT	0.4	0.002
b likeliness<0.77	2.6×10 ⁵	0.4	0.002
mvabdt>0.1	74	0.1	0.01
-0.93 <cosθ<sub>γ<0.93</cosθ<sub>	5	0.1	0.04

$$_{
m o}$$
95% C.L upper limit $\sigma_{\gamma H} = \sigma_{SM} + rac{1.64}{{
m significance}} \sigma_{SM}$ = 0.7 [fb] (Right handed)

5. Analysis - Uncertainty due to finite MC statistics (Left handed)

We conservatively re-estimated the numbers of remaining background events with high weights (= low statistics) and re-evaluated signal significance.

h→bb	total bg	Signal	Significance	95% C.L upper limit on σγH (fb)
Nominal	12422	29	inary 0.29	2.6
Conservative	13488	Prellin 29	0.25	2.7

h→WW	total bg	Signal	gnal Significance 95% C.L ι on σγH (fl	
Nominal	8	0.9	ninary 0.31	2.2
Conservative	92	Prellin 0.9	0.09	6.5

7. Summary

We have performed a full simulation study of $e^+e^- \rightarrow H\gamma$ at 250 GeV ILC, using ILD detector and full 1-loop SM amplitudes.

• signal significance and upper limit of $\sigma\gamma H$ for SM at $\sqrt{s}=250$ GeV, 900 fb⁻¹

(Left handed)Significance = 0.40 for SM $\sigma\gamma H < 1.8 \text{ fb}$ (95% C.L upper limit)(Right handed)Significance = 0.06 for SM $\sigma\gamma H < 0.5 \text{ fb}$ (95% C.L upper limit)

Estimated uncertainty due to finite MC statistics (Left handed)

Next step

Understand the role of this measurement in a global EFT analysis.

Back up

6. Background study

Propose : Estimate Monte Calro fluctuation

We can't make Monte Calro samples amount of 2ab-1 because some sample is huge. \rightarrow Define "Weight"

Expect # of event (2ab-1)

of Monte Carlo sample

Weight = $\frac{\text{Expect # of event (2ab-1)}}{\text{# of Monte Carlo sample}}$

What is the problem?

Propose : Estimate Monte Calro fluctuation

Weight = $\frac{\text{Expect # of event (2ab-1)}}{\text{# of Monte Carlo sample}}$

If a sample has huge weight (few Monte Carlo samples), its error seems over estimated.

 \rightarrow When we calculate the number of background at the worst case (upper limit), we should correct this effect.

For 0 or few background

Most background is suppressed by MVA and $\cos \theta_{\gamma}$, so I estimate how MVA, $\cos \theta_{\gamma}$ suppress backgrounds

M/A cupproccion ratio -	# of event when apply only MVA cut		
www.suppression.ratio =	# of event before cut		
MVA suppression ratio =	# of event when apply only $\cos \theta_{\gamma}$ cut		
	# of event before cut		

conservative # of background = # of background just before MVA cut ×MVA suppression ratio ×cos θ_{γ} suppression ratio

h→WW* semi leptonic

26

5. Analysis - Signal & Background (1)

h→WW* fully hadronic

h→WW* semi leptonic

27

5. Analysis - Event selection

The distribution of y43 and y32 for signal and background events

h→WW* fully hadronic h→WW* semi leptonic

29

5. Analysis - Event selection

h→WW* fully hadronic h→WW* semi leptonic

32

32

5. Analysis - Reduction table

	2f_h	4f_h	total bg	Signal	Signal hadronic	Significance
Expected	156093000	33599400	314154000	88.5	40.2	0.005
Pre selection	27978300	760090	61010200	80.5	37.7	0.01
# of particle>5	10295600	681904	11233500	36.5	32.0	0.01
<pre># of charged particle >1</pre>	5940470	591493	6646540	28.0	25.9	0.01
log10(y43)>-2.5 log10(y32)>-1.8	951914	527681	1515780	21.8	20.9	0.02
65 <mw1<90< td=""><td>348875</td><td>495465</td><td>860262</td><td>19.2</td><td>18.9</td><td>0.02</td></mw1<90<>	348875	495465	860262	19.2	18.9	0.02
20 <mw2<60< td=""><td>235286</td><td>311623</td><td>559275</td><td>17.6</td><td>17.4</td><td>0.02</td></mw2<60<>	235286	311623	559275	17.6	17.4	0.02
115 <mx<135< td=""><td>53738</td><td>15634</td><td>74447</td><td>15.7</td><td>15.6</td><td>0.06</td></mx<135<>	53738	15634	74447	15.7	15.6	0.06
90 <eγ<100< td=""><td>21447</td><td>5494</td><td>27290</td><td>11.8</td><td>11.8</td><td>0.07</td></eγ<100<>	21447	5494	27290	11.8	11.8	0.07
-0.9 <cosθ<0.9< td=""><td>10636</td><td>3758</td><td>14525</td><td>10.3</td><td>10.3</td><td>0.09</td></cosθ<0.9<>	10636	3758	14525	10.3	10.3	0.09
bmax1<0.7	9746	3696	13558	10.0	10.0	0.09

19.2>
$$\frac{\sigma_{\gamma H}}{\sigma_{SM}} = 1 - 201\zeta_A - 273\zeta_{AZ} > 0$$

asume $\zeta_A = 0$
-0.066> $\zeta_{AZ} > 0.0037$