Higgs to Invisible: MVA Second Pass

Chris Potter

University of Oregon

SiD Optimization, 28 April, 2021 - p.1/5

[Recall SiD Optimization, 17 Feb 2021] Full SiD Simulation

Signal is green with $BR(H \rightarrow inv.)=0.10$, the Barklow DBD all_SM_backround is blue.

Above, recoil mass after full signal selection. Below, cutflow yields and significances.

Requirement (Full)	S(LR)	B(LR)	$\frac{S}{\sqrt{S+B}}$	S(RL)	B(RL)	$\frac{S}{\sqrt{S+B}}$
$20 \leq p_T^{vis} \leq$ 70 GeV	1.25e+04	7.71e+06	4.48	8.84e+03	1.07e+06	8.53
$75 \le m_{vis} \le 105 \; { m GeV}$	1.16e+04	1.79e+06	8.63	8.21e+03	3.14e+05	14.5
$N_{jet} = 2$	1.16e+04	1.79e+06	8.63	8.21e+03	3.14e+05	14.5
$-0.9 \le \cos \theta_{jj} \le -0.2$	1.08e+04	8.68e+05	11.5	7.65e+03	1.78e+05	17.7
$110 \le m_{recoil} \le 150$	1.03e+04	3.6e+05	17	7.33e+03	8.39e+04	24.2

Full simulation (ILCSoft v02-00-02, SID o2_v3) scaled from 250 fb⁻¹ to 900 fb⁻¹.

SiD Optimization, 28 April, 2021 - p.2/5

[Recall SiD Optimization, 17 Feb 2021] Conclusions

From work previously shown here...

- The Tokyo/ILD study arXiv:2002.12048 is current ILC best for invisible Higgs decay.
- This study appears to neglect a major background, 3f $e\gamma \rightarrow eZ, \nu W$.
- A simple SiD cut/count analysis neglecting 3f background gives consistent yields.

From new work shown today here...

- A rough first pass at MVA suggests sizeable significance enhancements.
- Limitations of this first coarse look:
 - Some important input variables may have been overlooked.
 - All background categories were thrown at TMVA for training of one MVA.
 - The training sample all_SM_background is statistics limited.
 - MLP and BDT structure and training parameters were not optimized.

Work for the future....

- Develop high statistics samples for each background eZ, νW , WW, ZZ, $Z\nu\nu$.
- Develop separate MVA for each background with customized structure/training.
- Combine MVA from each background in combined likelihood or MVA.

SiD Optimization, 28 April, 2021 - p.3/5

Work Since SiD Optimization, 17 Feb 2021

- Two additional inputs have been added to the BDT/MLP: y_{43} and y_{32} , the jet distance parameter cut value required to go from four to three jets, and three to two jets.
- Separate BDT/MLP are now trained on each background category: $eZ, \nu W, WW, ZZ, Z\nu\nu, We\nu$.
- High statistics samples are now used for training and testing the MLP/BDT: all available Whizard files for these backgrounds from the DBD study have been fully SiD simulated and used in the training and testing.
- BDT/MLP structure and training parameters in TMVA have been tuned, though results are robust against tuning away from the defaults.
- The BDT consistently outperform the MLP in all background catagories, though the performance difference is small.
- The BDT ouputs from each background category have been used as inputs into a new MVA for final use in the analysis: Likelihood, BDT and MVA yield equal performance.
- The Likelihood MVA using outputs from all twelve BDT outputs as inputs has been incorporated into the analysis as a standalone C++ generated by TMVA.
- Results running the full analysis chain plus the standalone MVA are consistent with expectations from the TMVA analysis: the background is decimated.

SiD Optimization, 28 April, 2021 - p.4/5

Combined MVA: 12 inputs are BDT outputs

