Requirements for new Monte Carlo productions

Mikael Berggren¹

¹DESY, Hamburg

ILD General Meeting, June, 2021

< ロ > < 同 > < 回 > < 回 >

Mikael Berggren (DESY)

Requirements for new MC productions

• Whizard remains the generator of choice for e^+e^- .

- Full matrix-element evaluation. Only at tree-level but:
 - Can do 2 ightarrow 8 processes.
 - Polarised beams.
 - Full helicity treatment.
 - Full colour flow, passed from the hard interaction to the P.S. code.
 - Can handle beam-spectrum, using Circe2.
- ... which is more important than NLO for e^+e^- !
- The subsequent parton-shower and hadronisation is done by PYTHIA6.4.
 - LCGG has tuned hadronisation using input from OPAL at LEPII.
- The process-definition given in the Whizard steering file (aka the *sindarin*) is also the driver for the scripts that organises the production: One ring to rule them all.
- Use powerful grouping and aliasing capabilities of sindarin to assure that no processes are over-looked.

- Whizard remains the generator of choice for e^+e^- .
- Full matrix-element evaluation. Only at tree-level but:
 - Can do 2 \rightarrow 8 processes.
 - Polarised beams.
 - Full helicity treatment.
 - Full colour flow, passed from the hard interaction to the P.S. code.
 - Can handle beam-spectrum, using Circe2.
- ... which is more important than NLO for e^+e^- !
- The subsequent parton-shower and hadronisation is done by PYTHIA6.4.
 - LCGG has tuned hadronisation using input from OPAL at LEPII.
- The process-definition given in the Whizard steering file (aka the *sindarin*) is also the driver for the scripts that organises the production: One ring to rule them all.
- Use powerful grouping and aliasing capabilities of sindarin to assure that no processes are over-looked.

- Whizard remains the generator of choice for e^+e^- .
- Full matrix-element evaluation. Only at tree-level but:
 - Can do 2 \rightarrow 8 processes.
 - Polarised beams.
 - Full helicity treatment.
 - Full colour flow, passed from the hard interaction to the P.S. code.
 - Can handle beam-spectrum, using Circe2.
- ... which is more important than NLO for e^+e^- !
- The subsequent parton-shower and hadronisation is done by PYTHIA6.4.
 - LCGG has tuned hadronisation using input from OPAL at LEPII.
- The process-definition given in the Whizard steering file (aka the *sindarin*) is also the driver for the scripts that organises the production: One ring to rule them all.
- Use powerful grouping and aliasing capabilities of sindarin to assure that no processes are over-looked.

- Whizard remains the generator of choice for e^+e^- .
- Full matrix-element evaluation. Only at tree-level but:
 - Can do 2 \rightarrow 8 processes.
 - Polarised beams.
 - Full helicity treatment.
 - Full colour flow, passed from the hard interaction to the P.S. code.
 - Can handle beam-spectrum, using Circe2.
- ... which is more important than NLO for e^+e^- !
- The subsequent parton-shower and hadronisation is done by PYTHIA6.4.
 - LCGG has tuned hadronisation using input from OPAL at LEPII.
- The process-definition given in the Whizard steering file (aka the *sindarin*) is also the driver for the scripts that organises the production: One ring to rule them all.
- Use powerful grouping and aliasing capabilities of sindarin to assure that no processes are over-looked.

The classes

- $\bullet~$ ee, e $\gamma~$ or $\gamma\gamma$
- e polarisation and γ type (real or virtual)
- 2 Final state multiplicity
 - Number of fermions (0 to 8)
- Final state flavours
 - Flavour-grouping: W or Z, or ambiguous
- Final state lepton/hadron mix
 - leptonic, hadronic, semi-leptonic (+ neutrino only, for Z-leptonic)
- Beam-polarisation
 - LR, RL, RR, LL (100% always implied)
- Special Considerations
 - Eg. 4f with $|L_e|=2 \Rightarrow$ dominated by single W or single Z (t-channel I)

The classes

- $\bullet~$ ee, e $\gamma~$ or $\gamma\gamma$
- e polarisation and γ type (real or virtual)
- Pinal state multiplicity
 - Number of fermions (0 to 8)
- Final state flavours
 - Flavour-grouping: W or Z, or ambiguous
- Final state lepton/hadron mix
 - leptonic, hadronic, semi-leptonic (+ neutrino only, for Z-leptonic)
- Beam-polarisation
 - LR, RL, RR, LL (100% always implied)
- Special Considerations
 - Eg. 4f with $|L_e|=2 \Rightarrow$ dominated by single W or single Z (t-channel I)

The classes

- $\bullet~$ ee, e $\gamma~$ or $\gamma\gamma$
- e polarisation and γ type (real or virtual)
- Pinal state multiplicity
 - Number of fermions (0 to 8)
- Final state flavours
 - Flavour-grouping: W or Z, or ambiguous
- Final state lepton/hadron mix
 - leptonic, hadronic, semi-leptonic (+ neutrino only, for Z-leptonic)
- Beam-polarisation
 - LR, RL, RR, LL (100% always implied)
- Special Considerations
 - Eg. 4f with $|L_e|=2 \Rightarrow$ dominated by single W or single Z (t-channel I)

The classes

Initial state

- $\bullet~$ ee, e $\gamma~$ or $\gamma\gamma$
- e polarisation and γ type (real or virtual)
- Pinal state multiplicity
 - Number of fermions (0 to 8)
- Final state flavours
 - Flavour-grouping: W or Z, or ambiguous
- Final state lepton/hadron mix
 - leptonic, hadronic, semi-leptonic (+ neutrino only, for Z-leptonic)
- Beam-polarisation
 - LR, RL, RR, LL (100% always implied)
- Special Considerations
 - Eg. 4f with $|L_e|=2 \Rightarrow$ dominated by single W or single Z (t-channel !)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The classes

Initial state

- $\bullet~$ ee, e $\gamma~$ or $\gamma\gamma$
- e polarisation and γ type (real or virtual)
- Pinal state multiplicity
 - Number of fermions (0 to 8)
- Final state flavours
 - Flavour-grouping: W or Z, or ambiguous
- Final state lepton/hadron mix
 - leptonic, hadronic, semi-leptonic (+ neutrino only, for Z-leptonic)
- Beam-polarisation
 - LR, RL, RR, LL (100% always implied)
 - Special Considerations

• Eg. 4f with $|L_e|=2 \Rightarrow$ dominated by single W or single Z (t-channel !)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The classes

- $\bullet~$ ee, e $\gamma~$ or $\gamma\gamma$
- e polarisation and γ type (real or virtual)
- Pinal state multiplicity
 - Number of fermions (0 to 8)
- Final state flavours
 - Flavour-grouping: W or Z, or ambiguous
- Final state lepton/hadron mix
 - leptonic, hadronic, semi-leptonic (+ neutrino only, for Z-leptonic)
- Beam-polarisation
 - LR, RL, RR, LL (100% always implied)
 - Special Considerations
 - Eg. 4f with $|L_e|=2 \Rightarrow$ dominated by single W or single Z (t-channel !)

- Beam-spectrum.
 - Incoming beam-spread
 - 2 But also: very strongly focused beams \Rightarrow Beam-beam interactions
- Photons
 - How many photons?
 - Are they virtual or real?
- Incoming beam-spread from damping-rings and ondulator: External input from machine-scientists.
- Need beam-beam interaction simulation input.
- Simulate interaction region: GuineaPig. Gives:
 - Beam-spectrum for electrons and positrons independently
 - Distribution of interaction point
 - Amount and spectrum of real photons

- Beam-spectrum.
 - Incoming beam-spread
 - 2 But also: very strongly focused beams \Rightarrow Beam-beam interactions
- Photons
 - How many photons?
 - 2 Are they virtual or real?
- Incoming beam-spread from damping-rings and ondulator: External input from machine-scientists.
- Need beam-beam interaction simulation input.
- Simulate interaction region: GuineaPig. Gives:
 - Beam-spectrum for electrons and positrons independently
 - Distribution of interaction point
 - Amount and spectrum of real photons

- Beam-spectrum.
 - Incoming beam-spread
 - 2 But also: very strongly focused beams \Rightarrow Beam-beam interactions
- Photons
 - How many photons?
 - 2 Are they virtual or real?
- Incoming beam-spread from damping-rings and ondulator: External input from machine-scientists.
- Need beam-beam interaction simulation input.
- Simulate interaction region: GuineaPig. Gives:
 - Beam-spectrum for electrons and positrons independently.
 - Distribution of interaction point
 - Amount and spectrum of real photons

(日)

- Beam-spectrum.
 - Incoming beam-spread
 - 2 But also: very strongly focused beams \Rightarrow Beam-beam interactions
- Photons
 - How many photons?
 - 2 Are they virtual or real?
- Incoming beam-spread from damping-rings and ondulator: External input from machine-scientists.
- Need beam-beam interaction simulation input.
- Simulate interaction region: GuineaPig. Gives:
 - Beam-spectrum for electrons and positrons independently
 - Distribution of interaction point
 - Amount and spectrum of real photons

3

< 日 > < 同 > < 回 > < 回 > < □ > <

Two types:

- Pair-background: Pair-creation of photons in the beam by the strong fields. GuineaPig also gives us this.
- low-p_t hadrons, ie. $\gamma^{(*)}\gamma^{(*)}$ interaction with small invariant masses
 - ME can't do this, so need different generator
 - PYTHIA is good down to $M_{\gamma\gamma} \sim 2 \text{ GeV}$
 - $\bullet\,$ A lot happens below that, but is basically not known theoretically $\Rightarrow\,$ need to fit to data
 - Data is scarce, and ambiguous ...
 - \Rightarrow Custom generator developed for this.

Two types:

- Pair-background: Pair-creation of photons in the beam by the strong fields. GuineaPig also gives us this.
- low-p_t hadrons, ie. $\gamma^{(*)}\gamma^{(*)}$ interaction with small invariant masses
 - ME can't do this, so need different generator
 - PYTHIA is good down to $M_{\gamma\gamma} \sim$ 2 GeV
 - $\bullet\,$ A lot happens below that, but is basically not known theoretically $\Rightarrow\,$ need to fit to data
 - Data is scarce, and ambiguous ...
 - \Rightarrow Custom generator developed for this.

Two types:

- Pair-background: Pair-creation of photons in the beam by the strong fields. GuineaPig also gives us this.
- low-p_t hadrons, ie. $\gamma^{(*)}\gamma^{(*)}$ interaction with small invariant masses
 - ME can't do this, so need different generator
 - PYTHIA is good down to $M_{\gamma\gamma} \sim 2 \text{ GeV}$
 - Alot happens below that, but is basically not known theoretically \Rightarrow need to fit to data
 - Data is scarce, and ambiguous ...
 - $\bullet \Rightarrow$ Custom generator developed for this.

- These backgrounds need to be passed on to simulation, but in a different mode.
- Eg. can't simulate $\sim 10^5$ pairs on each physics event.
- Actually, can't generate that either: time for 1 BX 5-10 minutes
- Find the few tracks that do hit the tracking (< 100/BX). Do \sim 100000 BXes, and pick a random one from the pool to overlay to each physics event.
 - Done using the fast detector simulation code SGV, which faithfully evaluates detector acceptance.
- Also, use some (O(100)) BXes to simulate pairs hitting the BeamCal, to build a map of the background, to be used in the BeamCal simulation.
- Similar for low-p⊥ hadrons, but here also the number per BX is random, and their production point.

- These backgrounds need to be passed on to simulation, but in a different mode.
- Eg. can't simulate $\sim 10^5$ pairs on each physics event.
- Actually, can't generate that either: time for 1 BX 5-10 minutes
- Find the few tracks that do hit the tracking (< 100/BX). Do \sim 100000 BXes, and pick a random one from the pool to overlay to each physics event.
 - Done using the fast detector simulation code SGV, which faithfully evaluates detector acceptance.
- Also, use some (O(100)) BXes to simulate pairs hitting the BeamCal, to build a map of the background, to be used in the BeamCal simulation.
- Similar for low-p⊥ hadrons, but here also the number per BX is random, and their production point.

- These backgrounds need to be passed on to simulation, but in a different mode.
- Eg. can't simulate $\sim 10^5$ pairs on each physics event.
- Actually, can't generate that either: time for 1 BX 5-10 minutes
- Find the few tracks that do hit the tracking (< 100/BX). Do \sim 100000 BXes, and pick a random one from the pool to overlay to each physics event.
 - Done using the fast detector simulation code SGV, which faithfully evaluates detector acceptance.
- Also, use some (O(100)) BXes to simulate pairs hitting the BeamCal, to build a map of the background, to be used in the BeamCal simulation.
- Similar for low-p⊥ hadrons, but here also the number per BX is random, and their production point.

- These backgrounds need to be passed on to simulation, but in a different mode.
- Eg. can't simulate $\sim 10^5$ pairs on each physics event.
- Actually, can't generate that either: time for 1 BX 5-10 minutes
- Find the few tracks that do hit the tracking (< 100/BX). Do \sim 100000 BXes, and pick a random one from the pool to overlay to each physics event.
 - Done using the fast detector simulation code SGV, which faithfully evaluates detector acceptance.
- Also, use some (O(100)) BXes to simulate pairs hitting the BeamCal, to build a map of the background, to be used in the BeamCal simulation.
- Similar for low-p⊥ hadrons, but here also the number per BX is random, and their production point.

Straight-forward: 500 GeV

- Process-definitions and scripts directly from the 250 production.
- All beam-related issues are there after the IDR effort: Circe2 beam-spectrum, low p_T-hadrons, seeable pairs.
- Only caveat: Move of BeamCal: not quite correct background-map.

Some issues: 1 TeV

• As 500 GeV, but:

- For year. No Circast beam-spectra, nor Circa Inputs from GuineaPig.
 Minor Issue: clear path to produce these, just takes time and effort.
 Need to each cost blancing. Intraintit (second)
- Need to redo low p₁-hadrons: The competence to do this is

Issues: 350 GeV, M_Z

- As for 1 TeV, + no GuineaPig output at all (i.e. not for e⁺e⁻ either)
- Major Issues: Anything else (550-600 GeV, WW-threshold, > 1 TeV ...)
 - No beam-parameters known, i.e. not even input to GuineaPig exists.

Straight-forward: 500 GeV

- Process-definitions and scripts directly from the 250 production.
- All beam-related issues are there after the IDR effort: Circe2 beam-spectrum, low p_T-hadrons, seeable pairs.
- Only caveat: Move of BeamCal: not quite correct background-map.

Some issues: 1 TeV

- As 500 GeV, but:
 - For γ:s: No Circe2 beam-spectra, nor Circe inputs from GuineaPig.
 - Minor issue: clear path to produce these, just takes time and effort.
 - Need to redo seeable pairs (straight forward).
 - Need to redo low $p_{\mathcal{T}}\text{-hadrons}\text{:}$ The competence to do this is \sim gone!

Issues: 350 GeV, M_Z

- As for 1 TeV, + no GuineaPig output at all (i.e. not for e⁺e⁻ either)
- Major Issues: Anything else (550-600 GeV, WW-threshold, > 1 TeV ...)
 - No beam-parameters known, i.e. not even input to GuineaPig exists.

Straight-forward: 500 GeV

- Process-definitions and scripts directly from the 250 production.
- All beam-related issues are there after the IDR effort: Circe2 beam-spectrum, low p_T-hadrons, seeable pairs.
- Only caveat: Move of BeamCal: not quite correct background-map.

Some issues: 1 TeV

- As 500 GeV, but:
 - For γ :s: No Circe2 beam-spectra, nor Circe inputs from GuineaPig.
 - Minor issue: clear path to produce these, just takes time and effort.
 - Need to redo seeable pairs (straight forward).
 - Need to redo low p_T -hadrons: The competence to do this is \sim gone!
- Issues: 350 GeV, M_Z
 - As for 1 TeV, + no GuineaPig output at all (i.e. not for e^+e^- either)
- Major Issues: Anything else (550-600 GeV, WW-threshold, > 1 TeV ...)
 - No beam-parameters known, i.e. not even input to GuineaPig exists.

Straight-forward: 500 GeV

- Process-definitions and scripts directly from the 250 production.
- All beam-related issues are there after the IDR effort: Circe2 beam-spectrum, low p_T-hadrons, seeable pairs.
- Only caveat: Move of BeamCal: not quite correct background-map.

Some issues: 1 TeV

- As 500 GeV, but:
 - For γ:s: No Circe2 beam-spectra, nor Circe inputs from GuineaPig.
 - Minor issue: clear path to produce these, just takes time and effort.
 - Need to redo seeable pairs (straight forward).
 - Need to redo low p_T -hadrons: The competence to do this is \sim gone!
- Issues: 350 GeV, M_Z
 - As for 1 TeV, + no GuineaPig output at all (i.e. not for e^+e^- either)
- Major Issues: Anything else (550-600 GeV, WW-threshold, > 1 TeV ...)
 - No beam-parameters known, i.e. not even input to GuineaPig exists.

What next ? : Future developments

Whizard developments

gluon matching between ME and PS:

- Now: no gluons included in ME (setting α_s = 0) to avoid double-counting with (unmatched) parton shower in PYTHIA.
- Whizard 2 can do it's own parton-shower with "MLM matching". Exploit this !
- Medium-term wishes for Whizard:
 - γ ISR/FSR matching
 - Work out priority processes for EW-NLO (!)
- In general it would be nice to also have other generators
 - BHWide for better Bhabhas.
 - BDK/BDKRC for $\gamma\gamma \rightarrow \ell\ell$
 - Pythia8, MadGraph, Sherpa for double-checks.
 - Pythia8 instead of Pythia6 for hadronisation.

What next ? : Future developments

Whizard developments

gluon matching between ME and PS:

- Now: no gluons included in ME (setting $\alpha_s = 0$) to avoid double-counting with (unmatched) parton shower in PYTHIA.
- Whizard 2 can do it's own parton-shower with "MLM matching". Exploit this !
- Medium-term wishes for Whizard:
 - γ ISR/FSR matching
 - Work out priority processes for EW-NLO (!)

In general it would be nice to also have other generators

- BHWide for better Bhabhas.
- BDK/BDKRC for $\gamma\gamma \rightarrow \ell\ell$
- Pythia8, MadGraph, Sherpa for double-checks.
- Pythia8 instead of Pythia6 for hadronisation.

What next ? : Future developments

Whizard developments

• gluon matching between ME and PS:

- Now: no gluons included in ME (setting $\alpha_s = 0$) to avoid double-counting with (unmatched) parton shower in PYTHIA.
- Whizard 2 can do it's own parton-shower with "MLM matching". Exploit this !
- Medium-term wishes for Whizard:
 - γ ISR/FSR matching
 - Work out priority processes for EW-NLO (!)
- In general it would be nice to also have other generators
 - BHWide for better Bhabhas.
 - BDK/BDKRC for $\gamma\gamma \rightarrow \ell\ell$
 - Pythia8, MadGraph, Sherpa for double-checks.
 - Pythia8 instead of Pythia6 for hadronisation.

3

イロト 不得 トイヨト イヨト

Thank You !