

Summary for Session K "Modeling & precision theory & Electroweak physics"

Conveners:

Gudrun Heinrich (KIT) Stefan Höche (FNAL) Zhao Li (IHEP-CAS)

Jürgen Reuter (DESY)

Oct. 29, 2021

Talks in Session K

- Subleading Logarithmic QED Initial State Corrections to $e^+e^- \to \gamma^*/Z^*$ Kay Schönwald
- High precision QED calculations
 Adrian Signer
- Status report on Whizard 3 for the ILC Pia Bredt
- Merging of ISR and EPA structure functions with matrix element calculations
 Krzysztof Mekala
- <u>Electroweak precision observables at future electron-positron colliders</u>
 Lisong Chen

1. Subleading Logarithmic QED Initial State Corrections to $e^+e^- \rightarrow \gamma^*/Z^*$

Kay Schönwald in collaboration with: J. Ablinger, J. Blu"mlein, A. De Freitas

- At the next generation e^+e^- collider, the ISR effect is crucial for precision theoretical predictions w.r.t. experiment accuracy.
- The large $\log L = \ln \left(s/m_e^2 \right) \approx 10$ would be important.
- This could happen at various processes jet production via Z pole, $t\bar{t}$ production, ZH production etc.

1. Subleading Logarithmic QED Initial State Corrections to

$$e^+e^- \rightarrow \gamma^*/Z^*$$

Kay Schönwald in collaboration with: J. Ablinger, J. Blu"mlein, A. De Freitas

- 1988: First calculation to O(α²) for the LEP analysis, through expansion of the phase space integrals (BBN).
 - [Berends, Burgers, van Neerven (Nucl. Phys. B297 (1988))]
- 2012: New calculation up to $O(\alpha^2)$ using the method of massive operator matrix elements. [Blümlein, De Freitas, van Neerven (Nucl Phys. B855 (2012))]
 - \Rightarrow Calculations do not agree at $O(\alpha^2 L^0)!$
- We revisited the original calculation, doing the expansion in m_e at the latest stage. [Blümlein, De Freitas, Raab, KS (Nucl. Phys. B956 (2020))]
 - ⇒ our results agree with the ones obtained using massive OMEs

from Kay's talk slides

1. Subleading Logarithmic QED Initial State Corrections to $e^+e^- \rightarrow \gamma^*/Z^*$

Kay Schönwald in collaboration with: J. Ablinger, J. Blu mlein, A. De Freitas

• Using the method of massive operator matrix elements, they calculate the subleading QED initial state radiative corrections to the process $e^+e^- \to \gamma^*/Z^*$ for the first three logarithmic contributions from $O(\alpha^3L^3)$, $O(\alpha^3L^2)$, $O(\alpha^3L)$ to $O(\alpha^5L^5)$, $O(\alpha^5L^4)$, $O(\alpha^5L^3)$ and compare their effects to the leading contribution $O(\alpha^6L^6)$ and one more subleading term $O(\alpha^6L^5)$. The calculation is performed in the limit of large center of mass energies squared $s \gg m_e^2$.

$$\frac{\mathrm{d}\sigma_{ij}}{\mathrm{d}s'} = \frac{\sigma^{(0)}(s')}{s} \sum_{l,k} \Gamma_{li} \left(N, \frac{\mu^2}{m_e^2}\right) \cdot \tilde{\sigma}_{lk} \left(N, \frac{s'}{\mu^2}\right) \cdot \Gamma_{kj} \left(N, \frac{\mu^2}{m_e^2}\right) + O\left(\frac{m_e^2}{s}\right) = \frac{\sigma^{(0)}(s')}{s} H_{ij} \left(N, \frac{s}{m_e^2}\right)$$

$$= \Delta \sigma \text{ is the change in the total cross section from one order to the other for } z_0 = 4m_r^2$$

$$= \Delta \sigma \text{ is the change in the total cross section from one order to the other for } z_0 = 4m_r^2$$

$$= \Delta \sigma \text{ is the change in the total cross section from one order to the other for } z_0 = 4m_r^2$$

$$= \Delta \sigma \text{ is the change in the total cross section from one order to the other for } z_0 = 4m_r^2$$

$$= \Delta \sigma \text{ is the change in the total cross section from one order to the other for } z_0 = 4m_r^2$$

$$= \Delta \sigma \text{ is the change in the total cross section from one order to the other for } z_0 = 4m_r^2$$

$$= \Delta \sigma \text{ is the change in the total cross section from one order to the other for } z_0 = 4m_r^2$$

$$= \Delta \sigma \text{ is the change in the total cross section from one order to the other for } z_0 = 4m_r^2$$

$$= \Delta \sigma \text{ is the change in the total cross section from one order to the other for } z_0 = 4m_r^2$$

$$= \Delta \sigma \text{ is the change in the total cross section from one order to the other for } z_0 = 4m_r^2$$

$$= \Delta \sigma \text{ is the change in the total cross section from one order to the other for } z_0 = 4m_r^2$$

$$= \Delta \sigma \text{ is the change in the total cross section from one order to the other for } z_0 = 4m_r^2$$

$$= \Delta \sigma \text{ is the change in the total cross section from one order to the other for } z_0 = 4m_r^2$$

$$= \Delta \sigma \text{ is the change in the total cross section from one order to the other for } z_0 = 4m_r^2$$

$$= \Delta \sigma \text{ is the change in the total cross section from one order to the other for } z_0 = 4m_r^2$$

$$= \Delta \sigma \text{ is the change in the total cross section from one order to the other for } z_0 = 4m_r^2$$

$$= \Delta \sigma \text{ is the change in the total cross section from one order to the other for } z_0 = 4m_r^2$$

$$= \Delta \sigma \text{ is the change in the total cross section from one order to the other for } z_0 = 4m_r^2$$

$$= \Delta \sigma \text{ is the change in the total cross section from on$$

1. Subleading Logarithmic QED Initial State Corrections to

$$e^+e^- \rightarrow \gamma^*/Z^*$$

Kay Schönwald in collaboration with: J. Ablinger, J. Blu"mlein, A. De Freitas

ullet They also applied their calculation on the Forward-Backward Asymmetry $A_{\mathrm{FB}}.$

from Kay's talk slides

Adrian Signer for the McMule Team

NNLO QED corrections needed for

- ullet ightharpoonup McMule, a framework for fully-differential higher-order QED
- also in McMule: Michel decay (NNLO), rare and radiative decay (NLO)
- planned: electroweak corrections, polarised leptons, $e^+e^- \rightarrow \ell^+\ell^-$

Adrian Signer for the McMule Team

```
QED and QCD calculations have many common issues, but ...
```

- QED matrix elements are easier due to Abelian structure [no big deal]
- The infrared structure of QED is much(!!) simpler [advantage 1]
- In QED we typically want to keep $m_{\ell} \neq 0$ since $\log(m_{\ell})$ physical [problem 2]
- In QED we typically have to be exclusive w.r.t. hard collinear emission [problem 3]

```
consider (N...)NLO calculations in QED with massive fermions in McMule
```

Monte Carlo for MUons and other LEptons https://mule-tools.gitlab.io
■

Adrian Signer for the McMule Team

physical $(2 \rightarrow 2)$ cross section

$$\sigma = \int d\Phi_2 \left| \frac{\partial \Phi_2}{\partial \Phi_3} + \frac{\partial \Phi_3}{\partial \Phi_3} + \dots \right|^2$$

$$+ \int d\Phi_3 \left| \frac{\partial \Phi_3}{\partial \Phi_3} + \frac{\partial \Phi_3}{\partial \Phi_3} + \dots \right|^2$$

$$+ \int d\Phi_4 \left| \frac{\partial \Phi_4}{\partial \Phi_3} + \dots \right|^2$$

$$+ \dots$$

challenges

- fully differential phase-space integration
- \Rightarrow FKS $^{\ell}$
 - virtual amplitudes with massive particles
- → one-loop: OpenLoops
- ⇒ two-loop: massification
- numerical instabilities due to pseudo-singularities
- ⇒ next-to-soft stabilisation

Adrian Signer for the McMule Team

3. Status report on WHIZARD 3 for the ILC

Pia Mareen Bredt

About WHIZARD

recent version: v3.0.1 (v3.0.2 to be released in November)

team: Wolfgang Kilian, Thorsten Ohl, Jürgen Reuter

Pia Bredt, Nils Kreher, Pascal Stienemeier, Tobias Striegl

webpage: https://whizard.hepforge.org/

support: https://launchpad.net/whizard

email contact: whizard@desy.de

WHIZARD is a multi-purpose event generator for multi-particle scattering cross sections and simulated event samples for lepton and hadron collider processes covering SM and BSM physics

Lepton collisions in WHIZARD

beam effect	in WHIZARD
beamstrahlung:	CIRCE1/CIRCE2:
dense beams \Rightarrow strong EM fields	fits to GuineaPig spectrum
\Rightarrow EM bunch-bunch interaction	
bremsstrahlung:	ISR and EPA functions (cf. talk by K. Mekala):
IS soft/collinear photon emission	LL resummation in the strict
and small electron mass	collinear and/or soft limit
\Rightarrow energy and p_T spectra shifted	event generation: one photon
	per beam added.
	p_T and recoil via ${ t isr_handler}$
beam polarization	inclusion for a user-defineable setup
other beam structure features	asymmetric beams, crossing angles,

 used for ILC TDR and the recent 250 GeV mass production full SM samples (2012 - 2021)

Status of BSM models

Internal hard-coded models:

Model type	Model name
Yukawa test model	Test
QED with c, μ, τ, γ	QED
QCD with d, u, s, c, b, t, g	QCD
Standard Model	SM, SM_CKM
SM with anomalous gauge couplings	SM_ac, SM_ac_CKM
SM with Hgg , $H\gamma\gamma$, $H\mu\mu$, He^+e^-	SM_Higgs, SM_Higgs_CKM
SM with bosonic dim-6 operators	SM_d1m6
SM with charge 4/3 top	SM_top
SM with anomalous top couplings	SM_top_anom
SM with anomalous Higgs couplings	SM_rx/NoH_rx/SM_ul
SM extensions for VV scattering	SSC/AltH/SSC_2/SSC_AltT
SM with Z'	Zprime
Two-Higgs Doublet Model	THDM, THDM_CKM
MSSM	MSSM, MSSM_CKM
MSSM with gravitinos	MSSM_Grav
NMSSM	NMSSM, NMSSM_CKM
extended SUSY models	PSSSM
Littlest Higgs	Littlest
Littlest Higgs with ungauged $U(1)$	Littlest_Eta
Littlest Higgs with T parity	Littlest_Tpar
Simplest Little Higgs (anomaly-free)	Simplest
Simplest Little Higgs (universal)	Simplest_univ
SM with graviton	Xd1m
UED	UED
"SQED" with gravitino	GravTest
Augmentable SM template	Template

External UFO models:

- WHIZARD 3.0: full UFO support
 ⇒ backwards-compatibility mode
 for FeynRules/SARAH interfaces
- numerous bug fixes and ameliorations
- Spin 0, 1/2, 1, 2 supported
- arbitrary Lorentz structures
- Dirac + Majorana statistics
- higher-level vertices (5-8 point)
- UFO support for SMEFTsim 3.0
- UFO customized propagators
- · resonance histories with UFO
- BSM SLHA input

3. Status report on WHIZARD 3 for the ILC

Pia Mareen Bredt

Status of full SM NLO automation

- Automation of NLO fixed order corrections is based on the Frixione-Kunszt-Signer (FKS) subtraction [hep-ph/9512328]
 - ▶ NLO QCD automation completed ☑
 - - ★ pure EW corrections ☑
 - ★ QCD-EW mixed corrections (in validation)
 - ▶ next step: NLO EW for e⁺e⁻ collisions □ (technical results for massive IS)
- One-loop provision by OpenLoops [1907.13071] as standard
- Matching to parton showers by POWHEG scheme (for e^+e^- processes in validation, for pp processes work in progress)
- Validation with several other Monte-Carlo event generators:
 MG5_aMC@NLO, Sherpa, MUNICH, POWHEG-BOX, . . .

Mixed QCD-EW corrections

QCD-EW mixed corrections in WHIZARDs upcoming v3.0.2:

3. Status report on WHIZARD 3 for the ILC

Pia Mareen Bredt

We may expect Whizard be more powerful in the upcoming versions.

- NLO EW automation for e^+e^- (massless and massive)
- POWHEG matching for EW corrections
- Initial state photon shower
- YFS resummation with explicit photons
- Special treatment of WW threshold

Krzysztof Mękała

- This was motivated by the detection of DM at the future e^+e^- collider via mono-photon.
- Merging between ISR and ME photon to avoid double-counting using Whizard.

General idea: simulating very soft and collinear photons with the parametric approach and all detectable photons with the ME

Merging procedure:

ME photons –
$$E\geqslant 1$$
 GeV and $q_{\pm}\geqslant q_{merge}$ ISR photons – $E< 1$ GeV or $q_{\pm}< q_{merge}$

Krzysztof Mękała

CLIC380: results hardly depend on the merging scale and are comparable with those from another generator.

q_{merge} [GeV]	$\sigma(e^+e^- ightarrow uar u)$ [fb]
0.1	50,000
0.5	50,400
1	50,600
10	50,800
50	50,500

Example of physical analysis: Sensitivity of future e^+e^- colliders to processes of dark matter production with light mediator exchange, July 2021,

J. Kalinowski, W. Kotlarski, KM, P. Sopicki, A.F. Żarnecki, arXiv:2107.11194

Krzysztof Mękała

Some important $e^+e^- \rightarrow$ hadrons processes can occur via exchange of very soft photons.

A part of the background channels can be described within the framework of the Equivalent Photon Approximation $(\gamma \gamma \rightarrow q\bar{q})$. How to simulate such events?

For simplicity, let us consider the di-muon production process given by the following diagram:

Krzysztof Mękała

This process can be simulated using both the full matrix elements and the *Equivalent Photon Approximation*:

- ullet "full" ME $(e^+e^ightarrow e^+e^-\mu^+\mu^-)$
- ullet single EPA $(e^\pm\gamma o e^\pm\mu^+\mu^-)$
- double EPA $(\gamma \gamma \to \mu^+ \mu^-)$

$$e^+e^- \rightarrow e^+e^-\mu^+\mu^-$$
, 250 GeV, pure QED

A closer look shows that there is still much to understand!

5. Electroweak Precision Observables at future colliders

Lisong Chen, in collaboration with Ayres Freitas.

 The theoretical uncertainties are mostly larger than expected experiment errors.

Experimental Uncertainties Given by Future Electron-Positron Colliders

	Global fits at LEP/SLD/LHC	Current intrinsic theo. error	CEPC	FCC-ee	ILC/GigaZ
$M_{\rm W}[{ m MeV}]$	12	$4(\alpha^3, \alpha^2\alpha_s)$	1	$0.5 \sim 1$	2.5
$\Gamma_{\!Z}[{ m MeV}]$	2.3	$0.4(\alpha^3, \alpha^2\alpha_s, \alpha\alpha_s^2)$	0.5	0.1	1.0
$\sin^2 heta_{ m eff}^f [10^{-5}]$	16	$4.5(\alpha^3, \alpha^2\alpha_s)$	2.3	0.6	1

Why Leading Fermionic Corrections?

- Enhancement by power of Top Mass.
- Enhancement by power of flavor numbers

 N_f

5. Electroweak Precision Observables at future colliders

Lisong Chen, in collaboration with Ayres Freitas.

The sizes of the corrections are smaller than expected.

	$\Delta \overline{M}_{ m W} \ ({ m MeV})$	$\Delta \sin^2 heta_{ ext{eff}}$	$\Delta' \sin^2 heta_{ ext{eff}}$	$\Delta \overline{\Gamma}_{\mathrm{tot}} \; [\mathrm{MeV}]$	$\Delta' \overline{\Gamma}_{tot} [MeV]$
$\mathcal{O}(lpha^3)$	-0.389	$1.34 imes 10^{-5}$	2.09×10^{-5}	0.331	0.255
$\mathcal{O}(lpha^2lpha_{ m s})$	1.703	$1.31 imes 10^{-5}$	-1.98×10^{-5}	-0.103	0.229
Sum	1.314	$2.65 imes 10^{-5}$	0.11×10^{-5}	0.228	0.484

Comparing between two schemes

	on-shell M_t		$\overline{ m MS} \; m_{ m t}$	
	$\mathcal{O}(lpha^2)$	$\mathcal{O}(lpha^2lpha_{ m s})$	$\mathcal{O}(lpha^2)$	$\mathcal{O}(lpha^2lpha_{ m s})$
$\Delta r \ [10^{-4}]$	7.85	-1.09	7.56	-0.50
$\Delta \sin^2 \theta_{\rm eff}^f \ [10^{-5}]$	30.98	1.31	31.18	0.75
$\Delta \overline{\Gamma}_{\ell} \; [{ m MeV}]$	0.2412	-0.0157	0.2284	-0.0003
$\Delta \overline{\Gamma}_{\nu} \ [{ m MeV}]$	0.4145	-0.0002	0.4152	0.0009
$\Delta \overline{\Gamma}_{ m d} \; [{ m MeV}]$	0.6666	-0.0049	0.6780	-0.0018
$\Delta \overline{\Gamma}_{\mathrm{u}} \; [\mathrm{MeV}]$	0.4964	-0.0203	0.4911	-0.0029
$\Delta \overline{\Gamma}_{tot} [MeV]$	4.951	-0.103	4.947	-0.0093

5. Electroweak Precision Observables at future colliders

Lisong Chen, in collaboration with Ayres Freitas.

- EWPOs, like Z-bosn mass, are defined gauge-invariant.
- Need a gauge invariant theoretical description up to any given accuracy to compare with the measured Z-resonance lineshape, where all EWPOs are extracted from (R.G. Stuart 91).
- Gives a model-independent profile of four-fermion interaction with gauge resonance.
- In future electron-positron colliders' era
- Formally gauge invariant setup.
- Extendability.
- → Motivates this project! (GRIFFIN: Gauge-Resonance-In-Four-Fermion-INteraction)

Summary of summary

- For many observables, e.g. vector boson masses, scattering cross sections, decay width, the uncertainties of theoretical predictions are still larger than the future ILC experiment accuracy.
- Higher order QED corrections, EW corrections, EW-QCD mixed corrections would be inevitable for the future physics analysis. These are still very challenging.
- The theoretical predictions to the higher order corrections at the future ILC may raise many new difficulties as confronting electron mass, soft/collinear photon, renormalization schemes etc.
 Serious investigations are needed.
- Toolkits, e.g. McMule, Whizard, GRIFFIN, are under development to cover many different problems.

Thank you!