Diversified use of ILC: A possibility of hadron photoproduction experiments at a beam dump

Norihito Muramatsu ELPH, Tohoku Univ. 27 Oct., ILCX2021

Contents

Proposing hadron photoproduction experiments at ILC beam dump by generating a real photon beam with circular or linear polarization in the energy region of several dozen GeV.

Motivation & Beam production methods

- Advantages & Beam properties at ILC
- Discussions of physics possibilities

Second presentation on the photon beam production at ILC, following my talk @ LCWS2019 "Production of a coherent bremsstrahlung photon beam with several tens of GeV at ILC"

Motivation

A photon beam is a **unique** tool to study hadrons. SPring-8, JLab, ELSA, MAMI, ELPH, ... ILC can provide an **unprecedented** photon beam for hadron photoproduction.

Very high energy that can produce heavy hadrons including *c* & *b* quarks. P_c pentaquark ($uudc\bar{c}$) search at GleuX (Effective to study exotic 10 **PRL123 (2019) 072001** hadrons containing $q\bar{q}$.) $\sigma(\gamma p \rightarrow J/\psi p) nb$ GlueX

10⁻¹

9

10

SLAC Cornell

 E_{ν} GeV

Kharzeev et al. x 2.3 JPAC P⁺_c(4440) incoherent sum of: 2g exch. Brodsky et al

3g exch. Brodsky et al

20

3 / 12

High polarization can be easily achieved.

 \Rightarrow **J**^P information of hadrons

Bremsstrahlung beam production

 γ -ray radiation by a relativistic e[±] in a narrow cone.

- > If e^{\pm} is polarized, the γ beam has circular polarization due to the conservation of angular momentum.
- > If e^{\pm} passes through a periodic nuclear EM field, the γ beam has linear polarization. (coherent bremsstrahlung)

Such γ beams are now **in practical use** at many of hadron photoproduction experiments. (Max. E_{γ}~9 GeV @JLab)

Advantages of using ILC

High energy e[±] beam (125 GeV) Amorphous radiator: $\sim 1/E_{\gamma}$ spectrum up to E_{e} . **Crystal radiator** (coherent brems.): A narrower E_v range whose peak is adjustable to 20-80% of E₂. \blacktriangleright High e[±] current (20 μ A \times 10% = 2 μ A) > J-Lab (12 GeV) Hall-D : 10⁷ γ/sec with 200 nA \succ Small e[±] beam divergence (~ 1 µrad) < Characteristic cone angle $\theta = 1/\gamma \sim 4 \mu rad$ Longitudinally polarized e[±] beam with spin flip \Rightarrow Circular pol. & Suppression of systematics \Rightarrow Spin-flipped data can be added for linear pol.

Photon beam properties

Formulation by Olsen & Maximon, PR114 (1959) 887.

Circular polarization

$$P_{\gamma} = \frac{4E_{\gamma}E_0 - E_{\gamma}^2}{4E_0^2 - 4E_{\gamma}E_0 + 3E_{\gamma}^2} \cdot P_e$$

Linear polarization

Calculated by K. Livingston (Univ. of Glasgow) Peak energy setting by radiator angle at $E_{\gamma} = 0.6E_e$ (75 GeV) $\Rightarrow P_{lin}^{max} \sim 70\%$

6/12

Exotic hadrons

In recent ~20 years, many exotic hadrons have been found for charm & bottom sectors. (They suggest rich structures in hadron confinement.)

uudcc̄ pentaquark $P_c(4312)^+$ etc in $\Lambda_b^0 \rightarrow J/\psi pK^ P_c(4337)^+$ in $B_s^0 \rightarrow J/\psi p\bar{p}$

4-quark state including $c\overline{c}$ X(3872) in $B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}J/\psi$ Z⁺(4430) in $B^{0} \rightarrow K^{-}\pi^{+}\psi'$

Particularly, many new hadrons include *cc*.
⇒ Corresponding states in the *b* sector?
A high energy photon beam must be a suitable tool.

Meson

Heavy hadron photoproduction

- Photoproduction cross sections & spin observables must be sensitive to hadron properties.
 - \Rightarrow Complementary to LHCb, Belle-II, J-PARC, ...

	E_{γ} threshold	reaction
JLab GlueX	8.21 GeV (9.44 GeV)	$\begin{array}{c} \gamma p \rightarrow J/\psi \ p \\ \gamma p \rightarrow P_c(4312) \rightarrow J/\psi \ p \end{array}$
	8.71 GeV	$\gamma p \to \overline{D}{}^0 \Lambda_c^+$
	9.47 GeV	$\gamma p \to \overline{D}{}^0 \Sigma_c^+$
- New !	11.9 GeV	$\gamma p \to X(3872) \ p$
	14.9 GeV	$\gamma p \rightarrow Z^+(4430) n$
	32.3 GeV	$\gamma p \rightarrow X(6900) p$
	57.2 GeV	$\gamma p \to \Upsilon(1S) p$
	62.8 GeV	$\gamma p \rightarrow B^+ \Lambda_b$
	62.8 GeV	$\gamma p \to B^+ \Lambda_b$

Use of circular polarization

e.g. **Double Polarization Observable** to constrain the J^P of P_c(4450) *PRD 100 (2019) 034019 Note: Now considered as 2 overlapping peaks.*

$$A_{LL} = \frac{1}{2} \left[\frac{d\sigma(++) - d\sigma(+-)}{d\sigma(++) + d\sigma(+-)} - \frac{d\sigma(-+) - d\sigma(--)}{d\sigma(-+) + d\sigma(--)} \right]$$

General comment: Spin observables are sensitive to the **interference** between different J^{P} states even if they are **overlapped** with each other.

Use of linear polarization

e.g. Photon asymmetry to extract the J^P of Z⁺(4430) PRC 83 (2011) 065203

Note: Now J^{P} is determined to be 1^{+} .

Setup for hadron photoproduction experiments

Setup for hadron photoproduction experiments

- *Radiator* with a Goniometer (e.g. **t20-50** μ**m diamond**)
- > *Tagger* : Momentum measurement for recoil electrons.

 \Rightarrow Event-by-event determination of E_{γ} .

Spectrometer w/ a fixed target like CERN COMPASS exp.

- Proposing an experimental facility to provide circularly and linearly polarized photon beams via bremsstrahlung at a beam dump (E±4).
- An unprecedented photon beam with dozens of GeV & high polarization can be obtained at ILC.
- Heavy exotic hadrons including c & b quarks can be explored by photoproduction experiments.