H → hh decay in extended Higgs sectors with a nearly alignment scenario

Kei Yagyu (Osaka U.)

Collaboration with

Shinya Kanemura (Osaka U.) and Mariko Kikuchi (Nihon U.)

Paper in preparation

ILC Workshop on Potential Experiments (ILCX) 2021, Oct. 28th, Online

Introduction

Direct searches for extra Higgs

"Synergy" is important to determine the structure of the Higgs sector!

Precision measurements of h(125)

Keywords: Alignment/Decoupling

SM-likeness of h(125)

Keywords: Alignment/Decoupling

SM-likeness of h(125)

(Near) alignment without decoupling scenario becomes important.

2 Higgs doublet models (2HDM)

- ☐ Simple but important example
 - Motivations: SUSY, Composite Higgs, CPV, EWBG, Neutrino masses, Flavor anomalies, etc.
 - Natural extension with $\rho_{tree} = 1$

Davidson, Haber PRD71 (2005)

Higgs basis

$$\begin{pmatrix} \Phi_1 \\ \Phi_2 \end{pmatrix} = \begin{pmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \Phi \\ \Phi' \end{pmatrix} \qquad \tan \beta = v_2/v_1$$

We particularly consider the case with a softly-broken Z_2 and CP-conservation.

Higgs potential

$$\begin{split} V = & M^2 |\Phi'|^2 + \frac{\lambda_1}{2} |\Phi|^2 (|\Phi|^2 - v^2) + \frac{\lambda_2}{2} |\Phi'|^4 + \lambda_3 |\Phi|^2 |\Phi'|^2 + \lambda_4 |\Phi^\dagger \Phi'|^2 \\ & + \frac{\lambda_5}{2} (\Phi^\dagger \Phi')^2 + \lambda_6 (\Phi^\dagger \Phi') \left(|\Phi|^2 - \frac{v^2}{2} \right) + \lambda_7 (\Phi^\dagger \Phi') |\Phi'|^2 + \text{h.c.} \end{split}$$
 Defined in the Z₂ basis (tadpole condition imposed)

Higgs mixing:

$$\mathcal{M}_{H}^{2} = \begin{pmatrix} \lambda_{1}v^{2} & \lambda_{6}v^{2} \\ \lambda_{6}v^{2} & M^{2} + \frac{v^{2}}{2}\lambda_{345} \end{pmatrix} \begin{array}{c} \mathbf{h}_{1}' \\ \mathbf{h}_{2}' \\ \end{pmatrix} = \begin{bmatrix} \cos(\beta - \alpha) & \sin(\beta - \alpha) \\ -\sin(\beta - \alpha) & \cos(\beta - \alpha) \end{bmatrix} \underbrace{\begin{pmatrix} H \\ h \end{pmatrix}}_{1} \\ \text{125 GeV Higgs} \\ \end{array}$$

- lacksquare Decoupling limit: $M^2 o \infty$
- □ Alignment limit: $sin(\beta \alpha) \rightarrow 1$
- ☐ Hhh coupling @ near alignment

Gauge & Yukawa sector

$${\cal L}_{
m 2HDM} \supset |D_{\mu}\Phi|^2 + Y_f \, ar{\Psi}_L \Phi \Psi_R$$

$$+|D_{\mu}\Phi'|^2+Y_f\,oldsymbol{\xi_f}ar{\Psi}_L\Phi'\Psi_R$$

Gauge & Yukawa sector

	ξ _u	ξ_{d}	$\xi_{ m e}$
Type-I	cotβ	cotβ	cotβ
Type-II	cotβ	-tanβ	-tanβ
Type-X	cotβ	cotβ	-tanβ
Type-Y	cotβ	-tanβ	cotβ

Gauge & Yukawa sector at alignment limit

1. Exact alignment: $(h_1' \rightarrow h \text{ and } h_2' \rightarrow H)$ H becomes "fermiophilic".

	ξ _u	ξ_{d}	$\xi_{ m e}$
Type-I	cotβ	cotβ	cotβ
Type-II	cotβ	-tanβ	-tanβ
Type-X	cotβ	cotβ	-tanβ
Type-Y	cotβ	-tanβ	cotβ

Gauge & Yukawa sector at near alignment

- 1. Exact alignment: $(h_1' \rightarrow h \text{ and } h_2' \rightarrow H)$
 - H becomes "fermiophilic".
- Near alignment:H can be "bosophilic".

$$rac{\Gamma(H o BB)}{\Gamma(H o FF)} \propto rac{m_H^2}{m_F^2} rac{\cos^2(eta-lpha)}{\xi_F^2}$$

H decay at tree level

Type-I 2HDM with $m_H = m_A = m_{H+} = M$, $tan\beta = 5$

 $H \rightarrow hh/WW/ZZ$ modes become important in the near alignment region.

Q. What happens at one-loop level?

- 1. Definition of the alignment limit
- 2. Non-decoupling effects in the $H \rightarrow hh$ decay

What is the alignment?

■ It could be defined by the deviation in the Higgs decay rate:

"Alignment-ness" =
$$\Gamma(h \to VV)^{\mathrm{NP}}/\Gamma(h \to VV)^{\mathrm{SM}}$$

 \Box Tree level: sin(β-a) is a good parameter to express the alignment-ness.

$$h = (SM) \times \sin(\beta - \alpha)$$

Loop level: sin(β-a) does no longer express the alignment-ness.

What is the alignment?

■ It could be defined by the deviation in the Higgs decay rate:

"Alignment-ness" =
$$\Gamma(h \to VV)^{\mathrm{NP}}/\Gamma(h \to VV)^{\mathrm{SM}}$$

Tree level: sin(β-α) is a good parameter to express the alignment-ness.

h =
$$(SM) \times \sin(\beta - a)$$

HCOUP: Ver. 1 Kanemura, Kikuchi, Sakurai, KY (2017)

HCOUP: Ver. 2 Kanemura, Kikuchi, Sakurai, Mawatari, KY (2019)

Loop level: sin(β-a) does no longer express the alignment-ness.

Details of HCOUP, see my talk at F2.

H decay should be evaluated as a function of the "alignment-ness" at one-loop level.

1-loop corrected decay rates

See also Kodai Sakurai's talk for H[±] decays (today, 20:40- JST)

1-loop corrected decay rates

See also Kodai Sakurai's talk for H[±] decays (today, 20:40- JST)

Krause, Muhlleitner, Santos, Ziesche (2017)

- 1-loop amplitude is NOT suppressed by $\cos(\beta a)$.
- Non-decoupling case (M « m_{ϕ}) can enhance the decay rate.

$H \rightarrow hh$ decay at one-loop level

Kanemura, Kikuchi, KY, in preparation

- \square Decay BR of $H \rightarrow hh$ at one-loop level.
- 2HDM type-I, $tan\beta = 2$, $mH = mA = mH^+ = 500$ GeV, $cos(\beta-a) > 0$

 Φ = H, A and H+ $m_{\Phi}^2 = M^2 + \lambda_{\Phi} v^2$

Allowed by perturbative unitarity & vacuum stability

Large corrections can appear due to the non-decoupling effects.

Correlation b/w h decay & H decay

Kanemura, Kikuchi, KY, in preparation

Summary

- \square H \rightarrow hh decay can be important at near alignment region.
- ☐ This should be evaluated at one-loop level:
 - 1. Tree level definition of "alignment-ness" does no longer valid at loop levels.
 - 2. Non-decoupling effects can sizably change the decay rate, which is not suppressed by $cos(\beta a)$.
- \square One-loop corrections can change the BR by the factor level. Combining h_{125} decays, we can further extract inner parameters.

☐ Extra Higgs decays will be implemented in HCOUPv3.

